
AD-A272 726

I A

SUBMICRON SYSTEMS ARCHITECTURE PROJECT
Department of Computer Science
California Institute of Technology

Pasadena, CA 91125

DTIC
jiuV 17 1993

I FINAL TECHNICAL REPORT

I
Thi2 docýmýn• ha r-I -en approved

Ifor pubh: :-•ee.- e its
distribution is un.=e,

This document, assembled from the semi-annual technical reports delivered to

ARPA on the dates indicated within, is the final technical report for the research

sponsored by the Advanced Research Projects Agency, ARPA Order number
6202, and monitored by the Office of Naval Research under contract number
N00014-87-K-0745.

93-26703

SUBMICRON SYSTEMS ARCHITECTURE

Semiannual Technical Report

Department of Computer Science

California Institute of Technology

Caltech-CS-TR-90-14

3 1 October 1990

I
I
SReporting Period: 16 March 1990 - 30 September 1990

Principal Investigator: Charles L. Seitz DTIC QUALITY INBPECTED 5

Faculty Investigators: K. Mani Chandy 'c!esion For
Alain J. Martin NTIS CRA&!

Charles L. Seitz DTrC TA.

Stephen Taylor J:t :o

Jan van de Snepscheut By

Dist: o..icn i

A', dl •zdi ,' or

Dist Special

I-
Sponsored by the

Defense Advanced Research Projects Agency

It DARPA Order Number 6202

Monitored by the

ii[Office of Naval Research
Contract Number N00014-87-K-0745

ii

SUBMICRON SYSTEMS ARCHITECTURE

Department of Computer Science

California Institute of Technology

1. Overview and Summary

1.1 Scope of this ReportI/ This document is a summary of research activities and results for the six-and-
one-half-month period, 16 March 1990 to 30 September 1990, under the Defense
Advanced Research Project Agency (DARPA) Submicron Systems Architecture
Project. Previous semiannual technical reports and other technical reports covering
parts of the project in detail are listed following these summaries, and can be ordered
from the Caltech Computer Science Library.

1.2 Objectives

The central theme of this research is the architecture and desigrL of VLSI systems
appropriate to a microcircuit technology scaled to submicron feature sizes. Our work
is focused on VLSI architecture experiments that involve the design, construction,
programming, and use of experimental message-passing concurrent computers, and
includes related efforts in concurrent computation and VLSI design.

1.3 Highlights

* Mosaic C (section 2.1).

* Mosaic programming system (section 3.1).

* The Page Kernel demonstated (section 3.3).

* Self-timed designs (section 4.1-4.8).

!
I
I
* -1-

2. Architecture Experiments

2.1 Mosaic Project

Chuck Seitz, Nanette J. Boden, Jakov Seizovic, Don Speck, Wen-King Su

Our previous semiannual technical report includes a detailed description of the
development of the Mosaic C, an experimental fine-grain multicomputer based on
single-chip nodes and a reactive-process programming model.

Our previous report occurred just before the MOSIS 1.21im SCMOS run that
closed on 20 March 1990. Fast turnaround has allowed us to complete 2.5 iterations
of design, fabrication, and testing of the Mosaic silicon in this six-and-one-half-
month period.

The Mosaic project has proceeded in accordance with or faster than the schedule
outlined in the previous report.

Mosaic C dRAM

A 64KB (32Kx16) Mosaic C dRAM operated correctly on first silicon, and over
an exceptionally wide range of operating conditions. The only anomaly discovered
in testing this IT dRAM was one-to-zero errors in several locations in the outside
columns. These errors were traced to negative charge injected into the substrate by
input-protection structures on pads located several hundred /Lm away. The input-
protection structures were functioning correctly; ground bounce was causing the low
input to appear as a voltage less than ground, and correcting the ground bounce in

the test fixture cured the problem. The input-protection structures were replaced
with an annular design that will collect the negative charges with the structure, and
a guard structure was added to the outside columns of the dRAM.

This chip was also tested with a variety of deliberate disturbances, including
light, alpha particles, and wide power-supply variations. The speed is right on the
design target: 11MHz/V, eg, 44MHz at 4V operation.

The second silicon of the dRAM behaved in the same way as the first except for
its susceptability to substrate charge. The yield, however, was significantly lower,
but we have reason to believe that this was due to the run rather than to the changes
in the design.

Mlemoryless Mosaic 2.1

MM2.1 is a 1.2y• version of the MM2.0 with a minor microcode change. It uses the
original 3D, 4-bit-wide, synchronous router. Chips returned from fabrication in late
April 19D0, and are completely functional with a yicld of 48/50. They have been
exercised extensively in our first generation of program-development boards.

A prototype board was also made, consisting of MM2.1, our new 64KB, IT
dRAM, and two 15ns off-the-shelf EPROMs, to verify that there were no oversights

* -2-

in the design of the memory interface. The setup is functional up to 27MHz at 4V,
limited by the EPROM timing.

Memoryless Mosaic 3.0

MM3.0 is our first attempt at incorporating the 2D, 8-bit-wide asynchronous router
into the Mosaic. The MM3 chip is assembled from the same processor as MM2.1,
a version of the FMRC2.3 mesh-routing chip with several modifications (such as a
7-bit rather than a 6-bit field in the header flit to represent the relative distance),
and an almost completely redesigned packet interface.

The new packet interface had to deal with a different message format - 2D vs
3D routing; a different protocol at the router interface - 8-bit, 2-cycle asynchronous
vs 4-bit synchronous; and a higher data-rate at the router interface - 80MB/s vs
20MB/s. The scope of the required changes called for a new design rather than
numerous local patches. Only the interrupt and bus-arbitration logic remained
unchanged in the packet interface from the MM2.1 version. The packet interface
amounts to about 30% of the active area of the MM3.0.

We received the chips in mid-August, and have been testing them extensively
on our second-generation program-development boards. Two minor design errors
were discovered during the testing. The first error was the result of an oversight
in the optimization of a special case in the arbitration for storage. After this error
was discovered, 12 otherwise functional chips were sent to HP to have this bug
eliminated by cutting one second-metal wire with a laser. This repair was 100%
successful, and allowed us to look for deeper troubles. The second design error was
causing some 1 bits of packets to be received as Os. The problem was eventually
traced to the lack of a sufficient timing margin between the request and data lines
at the interface between the router and the packet interface.

Both errors were fixed, and the MM3.1 was submitted for fabrication in mid-
September 1990. The chips are expected in the beginning of November. Since we
believe that the MM3.1 will be fully functional, we have alreadv started the final
phase of assembling the full Mosaic element, and will have it ready by the time
MM3.1 chips are back.

Yield Observations

The yield for the MM3.0 was 38/50, much lower than the usual 45/50 to 48/50.
The yield for the memory on this same run was 16/50 rather than the previously
observed yield of 22/50.

We have tried to localize every fault to make sure that the fault is caused by
fabrication. rather than a marginal design. After extensive testing and numerous
hours of observing chips under the microscope, 8 of the 12 bad chips have been
positively identified as containing fabrication errors, and the other 4 contain
probable but invisible fabrication errors.

* -3-

I
II

I

I
I

I'

I
I)
U Pi0 t of IJ,.c A'Icrnory1c��s K! o.'�aic 2.

I

Program-Development /HHost-hitervface Boards

Mosaic Processor Development Board RJ.O: In order to allow meaningful software
development and more comprehensive testing of the Mosaic processor, we designed
a double-height (6U) VME board that holds 4 Mosaic processors connected in a

two-by-two array. The board contains 128 Kbytes of SRAM per processor, and
the SRAM is shared with the Sun 3/260 host by cycle stealinrg. The board and
the processors were shown to be operating correctly to a processor clock frequency
of 20 MHz - the maximum speed achievable with the 25ns external SRAM. We
have fabricated ten boards and populated six of them. One of the six is used as
a showpiece, and the other five are installed in various Sun 3/260s around the
department. The ability to run realistic programs allowed us to detect several logic
errors in the Mosaic processor that would otherwise have been missed.

Mosaic Development/Interface Board R2.0 Our decision to switch from a 3-D
synchronous message network to a 2-D asynchronous network made it necessary
to design a ,new development board. We have also taken the opportunity to modify
the processor-memory and processor-VME interface to increase the clock speed
achievable using our existing stock of 25ns SRAM chips. By putting the tri-state
buffers needed in R1.0 on the CPU chip itself, we have also halved the total number
of IC chips needed, thus making room available for installing external connectors to
bring out the uncommiteed channels of the four MM3 chips. The R2.0 can thus be
used as a host interface for the Mosaic multicomputer and as part of a test structure
during the manufacturing of the multicomputer modules.

The 25ns SRAM allows the board and the processor to run reliably at a speed

of 30 MHz. With a set of 15ns SRAM, we were able to run one of the MM3 chips at
35 MHz. The development board allowed us to discover and study a few problems
with the router-processor interface. It also allowed us to discover a logic error in
the condition-code register - an error that is manifested during context switching
- that would never have been discovered under normal testing procedures.

M~osaic C Compiler

We have customized the Gnu C Compiler (gcc) kit to produce Mosaic assembly
language code and a new assembler to produce Mosaic machine code to support
the development of a compiled and dynamically-linked run time environment. As
the authors of gcc claimed, the target for gcc is a CPU with 32 bit integers. For
the 1.6 bit Mosaic, the compiler produces sub-optimal codes. We are in the process
of refining the compiler to produce better code. We also need a new assembler
to support the dynamic linking of object codes and to handle a set of compiler-
generated directives.

-5-

Current Activities

With all of the silicon parts now tested, we are assembling the full Mosaic C node,
a chip that will be approximately 9mmxlOmm in 1.2pim MOSIS SCMOS. Much
of the effort is in developing the built-in-test code rather than in assembling the
geometry.

Negotiations with HP have been completed for the chip fabrication and
packaging devclupment for a first run of three 8x8 Mosaic boards.

A complete report on the packaging, manufacturing, testing, and early use of
the Mosaic C is anticipated for the next semiannual technical report.

2.2 Second-Generation Medium-Grain Multicomputers*

Chuck Seitz, Joe Beckenbach, Christopher Lee, Jalov Seizovic, Craig Steele,
Wen-King Su

Our Caltech project continues to work closely with the DARPA-supported
Touchstone project at Intel Scientific Computers. The principal research activities
in this period were concerned with mesh-routing chips for the Delta prototype (see
section 4.8).

The project currently operates the following multicomputers: 8-node and 64-
node Cosmic Cubes, a 128-node Intel iPSC/1, a 16-node Intel iPSC/2, and 32-node
and 192-node Symult S2010 systems. The 192-node S2010 system is, of course,
the preferred machine for users, and is accessed through the Caltech Concurrent
Supercomputer Facilities. Utilization has been at a level of approximately 90% of
the available node-hours.

* This segment of our research is sponsored jointly by DARPA and by grants from

Intel Scientific Computers (Beaverton, Oregon) and Symult Systems (Monrovia,California).

I -6-

I

3. Concurrent Computation

3.1 Fine-Grain-Multicomputer Programnming Systems

Nanette J. Boden, Chuck Seitz

Significant advances in several areas of fine-grain multicomputer software have been
made during the past six months. k

Removal of Undue Restrictions

We are continuing our investigations into approaches that remove perceived
"restrictions" on fine-grain multicomputer programming methods and on program
execution that, uncorrected, could limit the application space of these machines. In
previous reports we commented upon the apparent difficulty of permitting message
discretion and functions in programs without perhaps introducing violation of the
guarantee of message delivery. The argument is as follows: When a process is
waiting .'or the arrival of a particular message, messages received during the interim

must be buffered. Since the resources available on a node for this process are quite
limited, physical space may not be available that will allow the awaited message
to be received. Because we believed that unwanted messages could not be buffered
within the constraints of our reactive programming model, we suggested in the
last report that the need for the programming abstraction of message discretion
justified an engineering solution. During the last six months we discovered a
queueing formulation that successfully buffers unwanted messages while using only
reactive semantics and our process-creation mechanism. This solution to the
queueing problem enables a fine-grain multicomputer node to selectively receive
messages without danger of overflowing its small receive queue. Thus, we have
implemented an extremely convenient programming mechanism that uses only the
reactive semantics that are ideally suited for fine-grain machines.

Fine-grain programming is clearly facilitated by the addition of a selective
rcceive mechani.m. Many functionhi2 programs cr. be dircct!:, translated into
fine-grain programs - each function call results in the creation of a new process
that eventually responds with the function value. In addition, the selective receive
mechanism can be used to remove some of the simplifying assumptions that were
made in early runtime systems [Oct 1989 report]. In these runtime systems, process
creation was greatly simplified by assuming that if an available reference valuc cxists
for the creation of a new process on a remote node, then enough resources exist
on that node for the new process. We also assumed that the code for each process
resides on each node. The selective receive mechanism can be used to remove each of
these restrictions. During process creation, the selective receive mechanism enables
a nodoto.wait imtcefinitely for a reference value to be returned by the physical node
that is the eventual host for the new process. If the required code for a process is

not available on a particular node, the node can use the selective receive mechanism
to postpone processing of messages until the code has been dynamnically linked.

-7-

Runtime System Development

Since a major goal of the Mosaic project is to provide the user with completely
automatic resource management, the most recent runtime systems have focused
on exploring different algorithms for process placement, code distribution, node
local memory management, remote node memory management, etc. These systems
incorporate much of the fundamental elements of the Cantor rtintime system that
was developed for the Mosaic and briefly described in our April 1989 report. In
contrast to the Cantor runtime system, however, the Mosaic runtime systems
have been designed so that memory and other resource demands are distributed
throughout the multicomputer's available nodes. If the demands on a single node's
resources threaten to overflow the available resource, the node can forward the
requests or can free some of its own resources by exporting data structures. A
design goal of this family of runtime systems is that a computation should not fail
due to lack of resource until a very high percentage of the physical resources of the
entire machine is actually unavailable.

Two runtime systems with different approaches to node local memory manage-
ment have been developed and written in C. Using existing multicomputer nodes
simulating the behavior of a Mosaic node, a Mosaic ensemble simulator has been
used to partially debug these runtime systems. Further debugging, analysis, and
experimentation will be performed using the Mosaic Software development boards,
pending completion of a Mosaic C compiler.

Experimental Programming Notation

Since evaluation of the various runtime algorithm choices depends heavily on the
original coding of the user program and on the capability of the compilers, we have
been experimenting with a new notation for expressing fine-grain multicomputer
programs. Although use of the fine-grain language Cantor provided much insight
into the nature of fine-grain programming, the complex compiler and intermediate
code of Cantor do not facilitate experimentation with such issues of interest as
compiler-assisted resource management. Consequently, we are developing a C-based
notation that segments a program into a collection of definitions that encapsulate
information concerning processes and a collection of C functions that express
conventional code. The definitions are initially written in a C language extension;
a simple compiler extracts information about the processes that may be helpful
in process placement and other resource management tasks, and then converts the
definition code to conventional C. The C functions and the converted definitions
are then compiled-together using a coinentional C compiler.--The*-purlpose of this
effort is not to develop another fine-grain programming language, but rather to
facilitate experimentation with the compilation and runtime levels of computation.
This experimental programming notation is still in the design phase.

3.2 A Pascal Compilev for tue Mosaic

Jan L.A. van de Snepscheut, Johan J. Lukkien

We have implemented a Pascal compi-'•r for the Mosaic. The compiler takes a

Pascal source and generates code fn,, a single Mosaic chip. The language Pascal
has been extended with primitiv' (derived from CSP) to support the execution
of multiple processes on one processor. Communication can be performed between
pairs of processes, either on the same processor or on different processors, and is

synchronous. In this way we avoid the assignment of bufferspace to communicating
processes.

The compiler has been used since the first Mosaics became available. A monitor
program, running on a Sun workstation, loads the code into the Mosaics and
communicates with the Mosaics in order to implement basic input/output functions
(file I/0, terminal I/0). We have used this system to perform some fluid-flow
computations.

3.3 The Page Kernel

Craig S. Steele, Chuck Seitz

The previously-described "page kernel" (PK) concurrent programming environment
is now operating on the Symult S2010 multicomputer, and several test and
example programs have demonstrated the functionality of its concepts. The
PIK is an evolution of the now-familiar reactive programming model which
uses the virtual-memory capabilities of second-generation multicomputers to
implement data-sharing mechanisms supporting multiple overlapping address
spaces. The programmer accesses shared data structures much as in a shared-
memory machine, but without the need for explicit locking to control the problems

of concurrent access. The execution of the light-weight reactive processes,
called actions, implicitly induces atomicity and consistency of data modifications.
Poorly coded programs will generally run correctly but with limited effective
concurrency; efficiency is improved by eliminating unnecessarily broad data
consistency conditions, which may result from naive use of shared data structures.
A program formulation that avoids indiscriminate writing to widely-shared data
structures maximizes realizable concurrency under the PI1.

While performance optimization may require careful desi gn, n 1maNy (details of
mnulticom!puter programxning are considerably simplified iii the PIK enviromiment.
Message transmission becomes implicit, as does mutual exclusion of concurrent
writers to a single datum. The p)lacement of actions and data on nmulticoml)uter
nodes is handled transparently by the kernel. The physical configuration of the
u•nIte pu ter hardwaue-is hiddeii. from the programmer; the prograiminer's only
essential concern is to avoid reducing the probllem's logical concurrency, as expressed
in the program, beneath the physical concurrency, Cas provided by the available
hardware resources. A simple triggering scheme allows actions to be scheduied

I-9

when associated data structures are changed. Actions are coded in C++, allowing
definition of libraries of sharable data types of general utility, such as queue classes.

While both the kernel and the program suite are still under development,
preliminary results have demonstrated near-linear speedup for problems with dozens
of nodes, hundreds of actions, and thousands of shared data structures.

3.4 Multicomputer C

Marcel van der Goot, Alain Martin

Multicomputer C is a C-based concurrent programming language for message-
passing multicomputers. A program consists of concurrent processes connected
by channels, and communication and synchronization are done with CSP-like
communication actions via the channels. During the past half-year we have
worked on a manual and on a revision of the compiler. The manual describes the

language design and gives implementations of the new language constructions (like
communication actions). It also outlines techniques or alternatives for mapping
processes on machine nodes, using time-outs in the selection of communication
actions, prioritizing processes, sharing data, handling interrupts, and implementing

1/0.

One change was made to the language, with the introduction of multi-sender
channels. Such channels are useful to collect results computed by multiple processes
in a central point, and they can often be used as an alternative to shared variables.

The compiler was reviewed and updated to allow for better diagnostics and,
in particular, to facilitate code generation for a wider range of machines. The
original compiler generated ANSI C for a SUN workstation. The new version is
able to deal with some machine dependencies in the generated C (useful because for
nianv machines no C compilers that implement the full standard are available), and
can generate code for true mnulticomputers. Generating code for multicomputers
involves additional difficulties when not all processors are identical, as different
code may be required for different processors. Multicomputers also require a special
effort to implement a global namespace for functions and processes; this can only
be (lone at link-time. We expect the compiler to be running by the end of October,
generating code for SUN workstations and for multicomputers running CE/RK.
Adaptation to other mediurn-grain mul ticompu ters should be straightforward.

3.5 A Concurrent Wire-Routing Program

Si-Lin Wit, Chuck Seitz

We are attempting to use multicoinputers ao generate wire routings of circuit board:s
and VLSI chips. To produce nearly optimal routes, the program will use a cost
function based on physical considerations, and will also allow interaction with the
user.

-10-

We have adapted the Lee-Moore algorithm for hnding the shortest path between
two points to a method of finding good (cheap) routes of n points. By taking
advantage of existing electrically equivalent wires, this heuristic gives better routes
than simply applying the two-point algorithm repeatedly. As -with any attempt to
solve an NP-complete problem, the n-point Lee-Moore algorithm has pathological
cases, but wastes an acceptably small amount of wire in routing these.

There are easily exploitable concurrencies in this method. In the Lee-Moore
algorithm's propagation phase, the parts that make up the expanding wavefront
are independent and their activities can be computed concurrently. To disperse the
wavefront rapidly to the nodes of the multicomputer, a wrap mapping is used. The

II nets and sub-nets that comprise the netlist may also be routed independently if
they are confined to areas that do not intersect. The user may specify the order of
the nets to be routed, but within that order the program will have some latitude to
maximize concurrency. This is the classical manager-multiple-worker formulation
in which the boss gives instructions to a manager who must then work within those
constraints to divide the set of tasks among additional workers so that the work is
completed in the shortest possible time.

Cost is based on the idea that there are limited resources available. The cost
function adapts the value assigned to area, vias, and other structure to enforce
behaviors desired by the user. The user assigns such costs to reflect the extent that
allowing a wire to pass through that are; will deplete the user's supplies.

!i

-11

I
3 4. VLSI Design

4.1 The Asynchronous-VLSI Project

Alain J. Martin, Draien BorkoviZ, Steve Burns, Pieter Hazewindus, Tony Lee,
Jos6 Tierno

As the project is entering its second phase, it may be appropriate to recapitulate
its objectives and current status.

We have developed a novel design method for high-performance asynchronous
VLSI systems. There are two main directions to the research: The first one is

I a high-level synthesis approach to the design of digital VLSI circuits. In our

implementation of this idea, a circuit is first described as a concurrent computation
in a high-level notation. It is then "compiled" into a circuit by semantics-preserving
transformations. Consequently, the circuits obtained are correct by construction.

* (Typically, the object code is a network of CMOS pull-up and pull-down cells
connected to a pad frame.)

The second aspect of the research is a novel approach to asynchronous design.
We have now a complete design methodology that includes general techniques for
both control and datapath, as well as a repertoire of basic cells that includes
synchronizers and arbiters, generalized C-elements, bus controllers, registers,

sequencing cells (D-elements), etc.

Although CAD was not originally a main objective of the project, an important
CAD activity has developed in support of the rest of the research, since it has always
been a (self-imposed) requirement on the project to test the proposed ideas by actual
chip design. The set of CAD programs developed include tools for design (automatic
compilation), analysis (simulation and critical path analysis), optimization for
performance (transistor sizing), and physical layout (cell generation, placement and
routing).

First Results

We now have a general method for designing asynchronous (and quasi delay-
insensitive) circuits for any type of digital computation. We have demonstrated
the practicality of the method on a series of actual MOSIS CMOS designs. All
fabricated chips have been found correct on first silicon. The main chips designed
include stacks, queues, routing automata, multiplier, distributed mutual exclusion
(arbitration), special-purpose processor (3X + 1 engine); and culminated in two
designs of a general-purpose 16-bit microprocessor running at 18 MIPS in 1.6tim
CMOS. Since'-the ,design of this microprocessor included all main aspects of
digital design (except arbitration, which was demonstrated in previous chips), the
completion of the processor design was understood to be the completion of the first
phase of this project.

I -_12-

I
The results of the first phase of the project can be summarized as follows: First,

at the system design level, the design experiments (in particular the microprocessor)
have demonstrated the flexibility and versatility of the high-level notation that we
have developed. The conclusion we have drawn is that most high-level design issues
are indeed concurrency issues that are best solved with the techniques and notation
of concurrent computation. These results anticipate a unique design methodology
for digital systems across an increasingly moveable hardware/s6ftware boundary.

Second, it is possible to design asynchronous circuits that are efficient both in
area and speed. (At this point we believe that there is an irreducible area penalty
compared to synchronous design, but it falls well within acceptable margins given
the abundance of real-estate provided by modern technology.) With respect to
speed efficiency, our experiment with demanding designs like the control part of
the microprocessor indicate that rather sophisticated techniques have to be used
in order to reduce the penalty due to asynchronous sequencing (completion trees,
handshaking, etc) to an overhead comparable to that of clock skew. However,
once this objective has been achieved (which is the case of the control part of the
microprocessor), the asynchronous design can reap the benefits (when compared
to synchronous design) of the flexible execution times and extensive concurrency
provided by the concurrent computation approach.

ii Third, quasi delay-insensitive VLSI design exhibits remarkably robust behav-
iors. As previously reported, the microprocessor is operational across an unusually
broad range of VDD voltages and range of temperature. Another remarkable fea-
ture of this type of asynchronous designs is that the power consumption is about
an order of magnitude smaller than that of an equivalent synchronous design. This
characteristic is of course very attractive for the design of future multicomputers
that will require packaging a very large number of chips in a small volume, and also
for battery-operated applications.

I Designer-Assisted Compilation

The second phase of the project will concentrate on the system-level design, with a
redesign of an improved version of the processor as the first step towards an entirely
asynchronous system. However, we will focus first on improving the CAD tools, for

I the following reasons:

Our attitude towards automatic compilation has changed significantly during
the project. Whereas we originally thought that we would soon use an automatic

compiler for chip synthesis, we are now convinced that entirely automatic
compilation will not produce hiigh-performance design in the near future. We
have an automatic compiler that has been operational for several years already.
The. compilation is "syntax-directed," ie, the compiler produces a standard circuit
implementation for each syntactic construct of the language. The final design
is improved by "peep-hole" optimizations. Coupled with a standard cell-layout-
generation program, the compiler has been used for several automatic designs, eg,

* i -13-

for a torus-routing chip. Although such a compiler is an excellent tool for rapid
prototyping, our first attempt at using it for the control part of the microprocessor

convinced us that we will never get the performance we were aiming for if we follow
the route of automatic compilation: The performance of the critical path of a chip
like the microprocessor is just too sensitive to minor optimizations that an automatic
compiler cannot even generate, let alone evaluate.

Our approach now is that of designer-assisted compilation. Each step of the
synthesis method is applied automatically to produce a number of alternative
designs. These different solutions are compared and the best (according to some

criterion decided by the designer) is selected for the next step of the compilation.
The procedure also includes backtracking. This approach relies on tools for
performance evaluation and optimization.

The second generation of synthesis tools that we envision will integrate
simulation, performance evaluation, and optimization (transistor sizing). The
designer will be able or perhaps even required to make choices at different stages of
the synthesis based on the results of the previous stage. As a first step toward such a
system, we are designing a program for the synthesis of a straightline program into
CMOS chips. The final program will include automatic cell synthesis, transistor
sizing, placement and routing.

4.2 Testing Self-Timed Circuits

*-I Pieter Hazewindus, Alain Martin

A self-timed circuit is described as a production rule set, implementing a
handshaking expansion of a high-level program. For testing purposes, we use the
single stuck-at model. For this model, an input or an output of a gate is either
permanently at a high voltage (stuck-at-i) or at a low voltage (stuck-at-0). A
circuit is tested by executing the handshaking expansion that it implements.

We are currently analyzing the testability of the control part of the first self-
timed microprocessor. We have added the required testing circuitry. The revised
circuit will be sent off for fabrication shortly.

4.3 Gallium Arsenide and Self-Timed Circuits

Alain J. Martin, Jos6 A. Tierno

The same techniques used for designing self-timed circuits in silicon can be applied
to gallium arsenide (GaAs). However, the basic gates that are used in the
implementation have to be carefully designed for reliability, noise immunity, power
consumption, etc. A design style and a whole family of gates was developed so that

they can be used in an "oblivious" manner,Ahat is, requixing minimal concern for
the electrical characteristics of the circuit.

A special set of pad drivers and receivers was designed to interface with this
technology on chip and similar pads or CMOS circuits off chip. Work is in progress

-14-

now on two chips, one already in the fabrication queue and the second to be
submitted before October 24th. The first circuit contains several different buffers,
the basic synchronization structure for self-timed circuits, as well as smaller test
features for gates and pad drivers and receivers. The second circuit contains a
self-timed register file. These are being fabricated using Vitesse's enhancement
depletion mode process.

4.4 Automatic Compilation of Straightline Handshaking Expansion

Draien Borkoviý, Alain J. Martin

As a first step towards the next generation of synthesis tools, we are designing
a program for the synthesis of straightline program into CMOS chips. The final
program will include automatic cell synthesis, transistor sizing, placement and
routing.

The problem of positioning the state variable transitions for programs containing
conditional branches ("IF" statements) was proven to be NP complete. An
algorithm that solves the problem in 0(nk) was developed, where k is the number
of guarded commands in the "IF" statement, and n is the length of the longest
guarded command.

A program for automatic generation of minimal production rules for straight-line
handshaking expansions was developed, as well as one for the reset of the generated
circuits. The program allows the designer to explore different options and backtrack
in order to achieve the desired performance. It can also be coupled with number of
other tools: inverter reshuffling, performance analysis, and cell-layout.

4.5 Automatic Custom Cell Generation and Layout

Tony Lee, Alain J. Martin

We have developed a program which generates CMOS magic cells for implementing
a given set of production rules. The input production rules must be in disjunctive-
normal form and tl-h sizes of the transistors in the production rules may be specified.
The output generatedl by this program can be used directly by gladys, our placement
and routing program. Thus, we now have tools that will take an arbitrary set of
production rules (provided it is in disjuctive-normal form) and generate a complete
layout for it.

4.6 Self-Timed Arithmetic

Tony Lee, Alain J. MartinI ConY3ider the simple shift-and-add.imethod of multiplyingtwo n-bit integers. If we
ignore additions by zeros, then the number of partial-sum additions performed in the
multiplication is determined by the number of ones in the binary representation of

the multiplier. Furthermore, for each addition, the length of the longest carry-chain

-15-

is a function of the partial sum and the multiplicand. In general, the time involved
in performing an arithmetic operation is greatly affected by the values of the input
data. Nevertheless, this inherent variance in the latency of aIrthmetic operations
is usually not exploited by simple synchronous systems that, for the sake of timing
uniformity, operate under the worst-case delay assumption. Such a pessimistic
assumption is not needed for asynchronous systems since they function properly
regardless of the actual time it takes for them to perform a given computation.

Thus, we believe that efficient self-timed arithmetic circuits can be designed so
that they can take advantage of the shorter latency for cases of favorable inputs
and thereby yield better average performance than synchronous systems.

Our approach is to start with a high-level description of the arithmetic algorithm
and then apply our synthesis method to transform the description into self-timed
circuits. We have had encouraging results with the 3X + 1 engine and the simple
ALU used in the microprocessor. Currently, we are working on a multiplier that
implements the shift-and-add algorithm. The layout of the multiplier has been
completed and its functionality has been verified. We are now working on increasing
its performance by using our timing analysis tools to size the transistors.

4.7 Performance Analysis of Linear Arrays of Asynchronous Processes

Steve Burns, Alain Martin

We have developed a method for determining the performance of linear arrays of
repetitive asynchronous processes. The complexity of the procedure is related to
the size of the single replicated process and not to the size of the collection of

instantiated processes. This method is of great help in designing optimal pipeline
stages for a computing engine, as well as FIFOs and stack stages for memory
systems.

The method is an extension of the performance analysis techniques described
in the last semi-annual report, at TA U .,1, and in Steve Burns' forthcoming PhD
thesis. Linear timing functions - the principle tool used to reduce the analysis of
an infinite repetitive computation into the analysis of., finite structure - can also
be used to reduce the analysis of the computation performed by an infinite array of
processes into the analysis of a finite structure. Thus the performance of very large
systems can be determined with very little computational effort.

These techniques have been used to compare the performance of several possible
implementations of buffer processes. The impleme4tations that achieve the highest

performance have been cataloged for future use. The techniques have also been used

to show that particular designs developed by othe: : v'e•"chers are not optimal. We
suggest changes to these designs which improve performance.

-16-

4.8 Fast Self-Timed Mesh-Routing Chips

Chuck Seitz

Two design-fabricate-test iterations of the Frontier mesh-routing chips (FMRC)

for the Intel Touchstone Delta prototype were completed in this period. These
FMRC2.2 and FMRC2.3 chips incorporated a number of improvements, described
in our previous report, and aimed at increasing the reliability bof high-speed data
transfer on the channels.

The first mesh-routing chips fabricated in 1.2jim CMOS, the FMRC2.2,
functioned correctly, but, due to the designer's misunderstanding of correcting
for velocity saturation, the output drive was excessively asymmetrical. A small
investigation of the output characteristics allowed the pad drivers to be corrected
in the FMRC2.3 - this chip has been tested extensively both at Caltech and at
Intel, and appears to be completely adequate for the Touchstone Delta prototype.

These same lessons about pad drivers have been incorporated into the pad frame
of the Mosaic chips that are fabricated on these same runs.

The use of a 5-mil pad pitch in this 4492x4492, 132-pin, semi-standard frame,
an experiment that Wes Hansford at MOSIS encouraged, has caused no problems

4.9 A Silicon Architecture for Adaptive Cut-Through Routing

Mike Pertel, Chuck Seitz

Previous theoretical studies have shown that the performance of multicomputer
networks can be increased by using adaptive cut-through routing in place of
oblivious techniques (see Ngai and Seitz, 1988). State-of-the-art oblivious routers,
such as the FMRC routers described in the preceeding section, can route a packet
between a given pair of nodes along only one path, regardless of the state of the
network. Routers that can choose any of several paths exhibit greater utilization
of network bandwidth, better traffic balancing, and increased fault tolerance. To
implement the ideas from the earlier work, we have developed a simple architecture
for performing multipath routing. The architecture confines the design space to
allow detailed simulation, but does not appear to limit flexibility.

A routing algorithm for multicomputer networks must be deadlock-free to be
practical. The oblivious routers avoid deadlock by using dimension-order routing;
a multipath router requires another mechanism. A key idea from the theoretical
studies is to avoid deadlock by misrouting. Deadlock is impossible if a router never
blocks its input channels. By using any available output channel, it can rid itself

of packets that it cannot buffer. The earlier studies showed that even if misrouting
is used to avoid deadlock, it can be. made very rare by throttling the network
traffic. The architecture supports deadlock avoidance by being able to misroute
a packet from any input to any output. The congestion control required to cause
misrouting to be required only rarely is handled by requiring packet sources to

-17-

await an acknowledge message from the destination before further sending. This
technique also assures packet-order preservation despite the existence of multiple
paths between source and destination.

Once the problem of deadlock is resolved, we are free to consider any number of
ways to route packets. The path of a packet in an oblivious routing network is fixed
by the deadlock-avoidance scheme, but misrouting eliminates ýhis restriction. The
adaptive router can forward an incoming packet along any profitable output channel.
The exact definition of what constitutes a profitable channel assignment depends on
the specific routing algorithm, but in general a channel is profitable if it reduces the
packet's distance from its destination. We can avoid making misrouting a special
case by regarding any output assignment as profitable when input blocking becomes
imminent. Other than this, the definition of a profitable assignment is left open,
thus we maintain the flexibility to implement virtually any specific algorithm. Since
there will generally be more than one profitable output for a packet, it is necessary
to choose one assignment from multiple candidates. Moreover, output assignments
must be made fairly in the sense that any packet awaiting an output eventually gets
one.

An architecture to support this framework must be able to connect any input
to any output for misrouting. It must also have buffering to allow packets to
wait for profitable outputs to become available without blocking. This suggests
a simple structure with FIFOs and a crossbar. By placing the FIFOs on the input
channels, we can use the filling of the input queue to trigger misrouting. The
requirement that access to output channels be fair between the inputs, and the
necessity of ensuring that each input is connected to at most one output (and each
output to at most one input) suggest a central decision structure. An important
lesson from the theoretical studies was that simultaneous arrival of multiple new

packets needing output assignments is very rare. This suggests that the hardware
for reading/writing packet headers and computing/making profitable assignments
can be shared by all inputs, rather than duplicated, with negligible increase in

average assignment latency.

The incoming packets awaiting output assignments are serviced sequentially.
This eliminates the need to duplicate logic for computing assignments, and
trivializes the problem of mutual exclusion between assignnments. More importantly,
by serving the inputs round-robin, we guarantee fair access to the output channels.
When an input is served, we compute the profitability of each output in parallel.
If no profitable output is free, no assignment is made. If at least one profitable
assignment is possible, then one is chosen. In the case where the profitability of an
assignment is discrete (eg, binary), we arbitrarily select one of the most profitable

We assume that the determination of output profitability can be done in one cycle.

Based upon the theoretical studies, this is a reasonable assumption. Given that it
only takes one cycle to service an input, and that simultaneous header arrivals are

I -1S-

rare, sequential service does not compromise efficiency, and it solves the problems
associated with doing channel assignment quite cleanly.

We have developed a simulator for the architecture described. The profitability
of an assignment is determined by a small C function. We are proceeding to
compare the performance of several definitions of profitability under different traffic
conditions to select the best alternative. The simple architecture we have described
has the flexibility to implement the promising algorithms developed during the
earlier theoretical studies, yet it dramatically reduces the design space to explore.
In its simplicity, the architecture demonstrates that it is not difficult to design a
practical adaptive router.

I

|

-19

California Institute of Technology
Computer Science Department, 256-80

Pasadena CA 91125

Technical Reports
1 October 1990

Prices include postage uad help to defray our printing and mnailing costs.

Publication Order Form

To order reports fill out the last page of this publication form. Prepayment is required for all materials. Purchase orders

will not be accepted. All foreign orders must be paid by international money order or by check for a minimum of $50.00

drawn on a U.S. bank in U.S. currency, payable to CALTECH.

CS-TR-90-13 $3.50 Weakest Preconditions for Progress
Lukkien, Johan J, and Jan L A van de Snepscheut

CS-TR-90-12 $2.50 Performance Analysis and Optimization of Asynchronous Circ. Produced by Martin Analysis

Burns, Steven

CS-TR-90-11 $2.00 Characterizing sl NP and Measuring Instance Complexity
Judd, Stephen

CS-TR-90-10 $5.00 Primer for Program Composition Notation
Chandy, K Mani, and Stephen Taylor

CS-TR-90-09 $2.00 Asynchronous Circuits for Token-Ring Mutual Exclusion
Martin, Alain J

CS-TR-90-07 $2.00 Compiler Optimization of Array Data Storage
Gupta, Rajiv, and Jim Kajiya

CS-TR-90-06 $2.00 Distributed Sorting
Hofstee, 1I Peter, Alain J Martin, and Jan van de Snepscheut

CS-TR-90-05 $3.00 Submicron Systems Architecture
ARPA Semiannual Technical Report

CS-TR-90-03 $3.00 Program Composition Project
Chandy, K Mani, with Stephen Taylor, Carl Kesselman, and Ian Foster

CS-TR-90-02 $2.00 Limitations to Delay-Insensitivity in Asynchronous Circuits

Martin, Alain J

CS-TR-90-01 $3.00 Properties of the V-C Dimension, MS Thesis
Fyfe, Andrew

CS-TR-89-12 $3.00 Submicron Systems Architecture
ARPA Semiannual Technical Report

CS-TR-89-11 $9.00 Reactive-Process Programming and Distributed Discrete-Event Simulation, PhD Thesis

Su, Wen-King

CS-TR-89-10 $7.00 Silicon Models of Early Audition, PhD Thesis

Lazarro, John

CS-TR-89-09 $15.00 Framework for Adaptive Routing in Multicomputer Networks, PhD Thesis

Ngai, John

CS-TR-89-07 $6.00 Constraint Methods for Neural Networks and Computer Graphics, PhD Thesis

Platt, John

CS-TR-89-06 $1.00 First Asynchronous Microprocessor: The Test Results
Martin, Alain J, Steven 1\l Burns, T K Lee, Drazen Borkovic, and Pieter 3 llazewindns

CS-TR-89-05 $2.00 Essence of Distributed Snapshots
Chandy, K Mani

CS-TR-89-04 $5.00 Submicron Systems Architecture Project
ARPA Semiannual Technical Report

CS-TR-89-03 $3.00 Feature-oriented Image Enhancement with Shock Filters, I

lRudin, l.conid I with Stanley Osher

IC:datech Coinputer Science Technical Reports

CS-TR-89-02 $3.00 Design of an Asynchronous Microprocessor
Martin, Alain J

CS-TR-89-01 $4.00 Programming in VLSI From Communicating Processes to Delay-insensitive Circuits

Martin, Alain J

CS-TR-88-22 $2.00 Variants of the Chandy-Misra-Bryant Distributed D;screte-Event Simulation Algorithm
Su, Wen-King, and Charles L Seitz

CS-TR-88-21 $3.00 Winner-Take-All Networks of O(N) Complexity
Lazzaro, John, with S Ryckebusch, M A Mlahowald, and4 C A Mead

CS-TR-88-20 $7.00 Neural Network Design and the Complexity of Learning
Judd, J Stephen

CS-TR-88-19 $5.00 Controlling Rigid Bodies with Dynamic Constraints
Barzel, Ronen

CS-TR-88-18 $3.00 Submicron Systems Architecture Project
ARPA Semiannual Technical Report

CS-TR-88-17 $3.00 Constrained Differential Optimization for Neural Networks
Platt, John C, and Alan H Barr

CS-TR-88-16 $3.00 Programming Parallel Computers
Chandy, K Mani

CS-TR-88-15 $13.00 Applications of Surface Networks to Sampling Problems in Computer Graphics, PhD Thesis
Von Herzen, Brian

CS-TR-88-14 $2.00 Syntax-directed Translation of Concurrent Programs into Self-timed Circuits
Burns, Steven M, and Alain J Martin

CS-TR-88-13 $2.00 Message-Passing Model for Highly Concurrent Computation
Martin, Alain J

CS-TR-88-12 $4.00 Comparison of Strict and Non-strict Semantics for Lists, MS Thesis
Burch, Jerry R

CS-TR-88-11 $5.00 Study of Fine-Grain Programming Using Cantor, MS Thesis
Boden, Nanette J

CS-TR-88-10 $3.00 Reactive Kernel, MS Thesis
Seizovic, Jacov

CS-TR-88-07 $3.00 Hexagonal Resistive Network and the Circular Approximation
Feinstein, David I

CS-TR-88-06 $3.00 Theorems on Computations of Distributed Systems
Chandy, IK Mani

CS-TR-88-05 $3.00 Submicron Systems Architecture
ARPA Semiannual Technical Report

CS-TR-88-04 $3.00 Cochlear Hydrodynamics Demystified
Lyon, Richard F, and Carver A Mead

CS-TR-88-03 $4.00 PS: Polygon Streams: A Distributed Architecture for Incremental Computation Applied to Graphics,

MS Thesis
Gupta, Rajiv

CS-TR-88-02 $4.00 Automated Compilation of Concurrent Programs into Self-timed Circuits, MS Thesis
Burns, Stephen M

CS-TR-SS-01 $3.00 C Programmer's Abbreviated Guide to Multicomputer Programming

Seitz, Charles, Jakov Seizovic, and Wen-King Su
5258:Tl,:88 $3.00 Submicron Systems Architecture

A RIIA Semiannual Technical Report

5256:TR:87 $2.00 Synthesis Method for Self-timed VLSI Circuits
Martin, Alain. (current supply only: see Proc. ICCD'87: 1987 IEEE Inl'1. Conf. on Computer
Design 22.4-229, Oct'87)

2

Caltech Computer Science 'lcchincal IReports

5253:Tri:88 $2.00 Synthesis of Self-Timed Circuits by Program Transformation
Burns, Steven NI, and Alain J Martin

525 11'R:87 $2.00 Conditional Knowledge as a Basis for Distributed Simulation
Chandy, K Mani, and Jay Misra

5250:T[rl:87 $10.00 Images, Numerical Analysis of Singularities and Shock Filters, PhD Thesis
Rudin,' Leonid lakov

5249:TR:87 $6.00 Logic from Programming Language Semantics, PhD Thesis
Choo, Young-il

5247:TR:87 $6.00 VLSI Concurrent Computation for Music Synthesis, PhD Thesis
Wawrzynek, John

5246:TR:87 $3.00 Framework for Adaptive Routing
Ngai, John Y, and Charles L Seitz

5244:TR:87 $3.00 Multicomputers
Athas, William C, and Charles L Seitz

5243:TR:87 $5.00 Resource-Bounded Category and Measure in Exponential Complexity Classes, PhD Thesis
Lutz, Jack H

5242:TR:87 $8.00 Fine Grain Concurrent Computations, PhD Thesis
Athas, William C

5241:TR:87 $3.00 VLSI Mesh Routing Systems, MS Thesis
Flaig, Charles M

5240:TR:87 $2.00 Submicron Systems Architecture
ARPA Semiannual Technical Report

5239:TR:87 $3.00 Trace Theory and Systolic Computations
Rem, Martin

5238:TR:87 $7.00 Incorporating Time in the New World of Computing System, MS Thesis
Poh, Hean Lee

5236:TR:86 $4.00 Approach to Concurrent Semantics Using Complete Traces, MS Thesis
Van H~orn, Kevin S

5235:TR:86 $4.00 Submicron Systems Architecture

ARPA Semiannual Technical Report
5234:TR:86 $3.00 High Performance Implementation of Prolog

Newton, Michael 0
5233:TR:86 $3.00 Some Results on Kolmogorov-Chaitin Complexity, MS Thesis

Schweizer, David Lawrence

5232:TR:86 $4.00 Cantor User Report

Athas, NV C, and C L Seitz
5230:TR:86 $24.00 Monte Carlo Methods for 2-D Compaction, PhD Thesis

Mosteller, R C

5229:TR:86 $4.00 anaLOG - A Functional Simulator for VLSI Neural Systems, MIS Thesis
Lazzaro, John

5228:TR:86 $3.00 On Performance of k-ary n-cube Interconection Networks
Dally, \Vm J

5227:TR:86 $18.00 Parallel Execution Model for Logic Programming, Phl) Thesis
Li, Pey-yun Peggy

5223:TR:86 $15.00 Integrated Optical Motion Detection, PhD Thesis
Tanner, John E

5221:TR:86 $3.00 Sync Model: A Parallel Execution Method for Logic ProgrammingLi, Pey-yun Peggy, and Alain J Martin. (urn upyoy e rcSL'63dIE yu

on Logic Programming Sept '86)

n3

('altcch Ci'Oniter Scionci "'eckliicil lt.portut

5220:Tr•:86 $4.00 Submicron Systems Architecture
ARPA Seiilianiiual Technical lReport

5215:T1/:86 $2.00 How to Get a Large Natural Language System into a Personal Computer
Thompson, Tiozenaa 11, and Frederick B Thompson

5214:T'R:86 $2.00 ASK is Transportable in Half a Dozen Ways

Thompson, Bozena 11, and Frederick B Thompson

5212:TR:86 $2.00 On Seitz' Arbiter
Martin, Alain J.

5210:TR:86 $2.00 Compiling Communicating Processes into Delay-Insensitive VLSI Circuits

Martin, Alain. (current supply only; see Distributed Computing v I no 4 (1986))

5207:TR:86 $2.00 Complete and Infinite Traces: A Descriptive Model of Computing Agents

van Hlorn, Kevin

5205:TR:85 $2.00 Two Theorems ctn Time Bounded Kolmogrov-Chaitin Complexity

Schweizer, David, and Yaser Abu-Mostafa

5204:TR:85 $3.00 An Inverse Limit Construction of a Domain of Infinite Lists
Choo, Young-II

5202:TR:85 $15.00 Submicron Systems Architecture
ARPA Semiannual Technical Report

5200:TR:85 $18.00 ANIMAC: A Multiprocessor Architecture for Real-Time Computer Animation, PhD Thesis
Whelan, Dan

5198:TR:85 $8.00 Neural Networks, Pattern Recognition and Fingerprint Hallucination, PhD Thesis
Mjolsness, Eric

5197:TR:85 $7.00 Sequential Threshold Circuits, MS thesis
Platt, John

5195:TR:85 $3.00 New Generalization of Dekker's Algorithm for Mutual Exclusion
Martin, Alain J. (current supply only: see Information Processing Letters 23 295-297 1986)

5194:TR:85 $5.00 Sneptree - A Versatile Interconnection Network
Li, Pey-yun Peggy, and Alain J Martin

5193:TR:85 $2.00 Delay-insensitive Fair ArbiterIMartin, Alain J

5190:TR:85 $3.00 Concurrency Algebra and Petri Nets

Choo, Young-il

5189:TR:85 $10.00 Hierarchical Composition of VLSI Circuits, PhD Thesis
Whitney, Telle

5185:TR:85 $11.00 Combining Computation with Geometry, PhD Thesis

Lien, Slieue-Ling

5184:TR:85 $7.00 Placement of Communicating Processes on Multiprocessor Networks, NIS Thesis
Steele, Craig

5179:TR:85 $3.00 Sampling Deformed, Intersecting Surfaces with Quadtrees, MS Thesis
Von Ilerzen, Brian P

5178:TR:85 $9.00 Submicron Systems Architecture
AIW.IA SemiannUal Technical Itcport

5174:TR:85 $7.00 Balanced Cube: A Concurrent Data Structure
Dally, William .1, and Charles l, Seitz

5t72:TR:85 $6.00 Combined Logical and Functional Programming Language

Newton, Michael

5168:TR:84 $3.00 Object Oriented Architecture
Dally, Bill, and .1ira Kajiya

5165:TR:84 $4.00 Customizing One's Own Interface Using English as Primary Language

Thomlpson, B II, and Frederick 13 Thompson

II

licch (ipolitkr Sch ilce Tlenical lkpols

516l:TIL:8l $13.00 ASK French - A French Natural Language Syntax, MS Thesis

Sanouillat, R{emny

5 160:TrI:84 $7.00 Submicron Systems Architecture
A RPA Semiannual Technical Rteport

5158:Tlt:84 $6.00 VLSI Architecture for Sound Synthesis
Wawrzynek, J(hn, and Carver Mead

5157:TR:84 $15.00 Bit-Serial Reed-Solomon Decoders in VLSI, PhD Thesis
Whiting, Douglas

5147:TR,:84 $4.00 Networks of Machines for Distributed Recursive Computations
Martin, Alain, and Jan van de Snepscheut

5143:TR:84 $5.00 General Interconnect Problem, MS Thesis
Ngai, John

5140:TR:84 $5.00 Hierarchy of Graph Isomorphism Testing, MS Thesis
Chen, Wen-Chi

5139:TR:84 $4.00 HEX: A Hierarchical Circuit Extractor, MS Thesis
Oyang, Yen-Jen

5137:TR:84 $7.00 Dialogue Designing Dialogue System, PhD Thesis
Ho, Tai-Ping

5136:TR:84 $5.00 Heterogeneous Data Base Access, PhD Thesis
Papachristidis, Alex

5135:TR:84 $7.00 Toward Concurrent Arithmetic, MS Thesis

Chiang, Chao-Lin

5134:TR:84 $2.00 Using Logic Programming for Compiling APL, MS Thesis
Derby, Howard

5133:TR:84 $13.00 Hierarchical Timing Simulation Model for Digital Integrated Circuits and Systems, PhD Thesis
Lin, Tzu-mu

5132:TR:84 $10.00 Switch Level Fault Simulation of MOS Digital Circuits, MS Thesis
Schuster, Mike

5129:TR:84 S5.00 Design of the MOSAIC Processor, NIS Thesis
Lutz, Chris

5128:TM:84 $3.00 Linguistic Analysis of Natural Language Communication with Computers
Thompson, Bozena I1

5125:TR,:84 $6.00 Supermesh, MS Thesis

Su, Wen-King

5123:TR:841 S14.00 Mossim Simulation Engine Architecture and Design
Dally, Bill

5122:TR:84 $8.00 Submicron Systems Architecture
AltPA Semiannual Technical Report

511,:TNI:84 $3.00 ASK As Window to the World
Thompson, Bozena, and lred Thompson

5112:T1{:83 $22.00 Parallel Machines for Computer Graphics, Phi) Thesis

Ulner, Michael

5106:TM:83 $1.00 Ray Tracing Parametric Patches
Kajiya, .Jaines T

51041:TR:83 $9.00 Graph Model and the Embedding of MOS Circuits, MS Thesis
Ng, Tak-Kwvong

5094:TR:83 $2.00 Stochastic Estimation of Channel Routing Track Demand
V Ngai, John

5092:TM:93 $2.00 Residue Arithmetic and VLSI

Chiang, Chao-Lin, and Lcnnart .ohnIsson

Caltech Comput :r Science Technical lteports

5091 :Tl:83 $2.00 Race Detection in MOS Circuits by Ternary Simulation
B ryant, Randal E

5090:TR:83 $9.00 Space-Time Algorithms: Semantics and Methodology, IPhD Thesis
SChen, Marina Clhien-mei

5089:TRl:83 $10.00 Signal Delay in General RC Networks with Application to Timing Simulation of Digital Integrated
Circuits
Lin, Tzu-Mu, and Carver A Mead

5086:TR:83 $4.00 VLSI Combinator Reduction Engine, MS Thesis

Athas, William C Jr

5082:TR:83 $10.00 Hardware Support for Advanced Data Management Systems, PhD Thesis
Neches, Philip

5081:TR:83 $4.00 RTsim - A Register Transfer Simulator, MS Thesis
Lam, Jimmy

5074:TR:83 $10.00 Robust Sentence Analysis and Habitability
Trawick, David

5073:TR:83 $12.00 Automated Performance Optimization of Custom Integrated Circuits, PhD Thesis
Trimberger, Steve

5065:TR:82 $3.00 Switch Level Model and Simulator for MOS Digital Systems
Bryant, Randal E

5054:TM:82 $3.00 Introducing ASK, A Simple Knowledgeable System Conf on App'l Natural Language Processing
Thompson, Bozena H, and Frederick B Thompson

5051:TM:82 $2.00 Knowledgeable Contexts for User Interaction Proc Nat'l Computer Conference
Thompson, l3ozena, Frederick B Thompson, and Tai-Ping H1o

5035:TR:82 $9.00 Type Inference in a Declarationless, Object-Oriented Language, MS Thesis
Hlolstege, Eric

5034:TR:82 S12.00 Hybrid Processing, PhD Thesis
Carroll, Chris

5033:TR:82 S4.00 MOSSIM II: A Switch-Level Simulator for MOS LSI User's Manual
Schuster, Mike, Randal Bryant, and Doug Whiting

5029:TNM1:82 $4.00 POOH User's Manual
Whitney, Telle

5018:TM:82 $2.00 Filtering High Quality Text for Display on Raster Scan Devices
Kajiya, Jim, and Mike Ullner

5017:TM:82 S2.00 Ray Tracing Parametric Patches
* IKajiya, Jim

5015:TR:82 $15.00 VLSI Computational Structures Applied to Fingerprint Image Analysis
Megdal, Barry

5014:TR:82 S15.00 Extension of Object-Oriented Languages to a Homogeneous, Concurrent Architecture, PhD Thesis

Lang, Charles It Jr

5012:TM:82 $2.00 Switch-Level Modeling of MOS Digital Circuits
Bryant, ltandal

5000:TR:82 $6.00 Self-Timed Chip Set for Multiprocessor Communication, MS Thesis
\rhiting, Douglas

0 0

168,1:TR:82 $3.00 Characterization of Deadlock Free Resource Contentions

Chenr, Marina, Martin Reim, and Ronald Graham

4655:TR:81 $20.00 Proc Second Caltech Conf on VLSI

Seitz, Charles, ed.
4090-TR-80 $3.00 VLSI Based Real-Time Hidden Surface Elimination Display System, MS riiesis

Dlemetrescti, Stcfan G

6

Caltech (Comiputer Science Technical Reports

3760:TR:80 $10.00 Tree Machine: A Highly Concurrent Computing Environment, PhD Thesis
Browvning, Sally

3759:T1{:80 $10.00 Homogeneous Machine, PhD Thesis
Locanthi, Bart

3710:Tlt:S0 $10.00 Understanding Hierarchical Design, PhD Thesis
ROWSOIn) J ames

3340:TR:79 $26.00 Proc. Caltech Conference on VLSI (1979)

Seitz, Charles, ed

2276:TM:78 $12.00 Language Processor and a Sample Language
Ayres, Ron

I7

3 ~ ~Caltecli Comiputecr Scienice 'Technical Rteports

Please PRINT your naijie, addre:ss anid ainoti nt eniclosed belowv:

Iianae
Address

I City State Zip Counitry

3Amount enclosed $

_____Please check here if you wish to be included on our mailing list

3 Please check here for any chiange of address

____Please check here if you would prefer to have future publications lists sent to your e-mail address.

IE-mail address

IReturn this form to: Computer Science Library, 256-80, Caltech, Pasadena CA 91125

UCS-TR-90- 13 -CS-TR-88- 19 -5244 :TR:87 -5204 :TR:85 -5139:TR:84 -- 5073:TR,:83
-CS-TR-90-12 -CS-TR-88-18 -5243:TR:87 -5202:TR:85 -5137:TR:84 -5065:TR:82
-CS-TR-90-11 -CS-TR-88-17 -5242:TR:87 -5200:TR:85 ... 5136:TR:84 -5054:TM:82U .. CS-TR-90--10 -CS-TR-88-16 -5241:TR:87 -5198:TR:85 .5135:TR:84 -5051:TM:82

CS-TR-90-09 -CS-TR-88- 15 -5240:TR:87 -....5197:TR:85 -51 34:TR:84 -5035 :TR:82I ~CS-TR-90-07 -CS-TR-88-14 -5239:TR:87 -5195:TR:85 ___5133:TR:84 .. 5034:TR:82
-CS-TR-90-06 -CS-TR-88-13 ___523S:TR:87 .5194:TR:85 .. 5132:TR:84 -5033:TR:82

-CS-TR-90-05 -CS-TR-88-12 ___5236:TR:86 -5193:TR:85 -5129:TR:84 -5029:TM:82
__CS-TR-90-03 ___CS-TR-88- 11 -5235:TR:86 -5190:TR:85 -5128:TM :84 -50 18:TM:82

.CS-TR-90-02 ___CS-TR-S8- 10 -5234 :TR:86 -5189:TR:85 -5125:TR:84 .50 17:TM:82
___CS-TR-90-01 -CS-TR-8S-07 _5233 :TR:86 -5185:TR:85 -5123:TR:84 .50 15:TR:82

-CS-TR-89- 12 ___CS-TR-88-06 -5232:TR:86 -5184:TR:85 -5122:TR:84 5014:TR:82
___CS-TR-89-1 1 -CS-TR-88-05 -5230:TR:86 -5179:TR:85 -51 14:TM1:84 .50 12:TMI:82

__CS-TR-89-10 ___CS-TR-SS-04 -5229:TR:86 -5178:TR:85 -51 12:TR:83 ___5000:TR:82

-CS-TR-89-09 -CS-TR-8S-03 -5228:TR:86 -5174:TR:85 -5106 :TN\'I:S3 -4684 :TR:82
___CS-TR-89-07 -CS-TR-SS-02 ___5227:TR:86 -5172:TR:S5 -5104 :TR:83 -4655:TR:81U CS-TR-89-06 -CS-TR-SS-0 1 -5223 :TR:S6 -5168:TR:S4 -5094:TR:S3 -4090-TR-80

CS-TR-89-05 ___52-58:TR:SS -522 1:TR:S6 .5165:TR:84 __5092:TMN,:S3 ___3760:TR:80
CS-TR-89-04 ___5256:T l{87 _5220 :TR:S6 -5164:TR:81 -5091 :'L'R:S3 ___3759:Tlt:SO

___CS-TR-89-03 _52.53:Tru8S -52 15:TR:S6 -5160:TR:84 ___5090:TI'{:S:3 ___3710:TR:SO
CS-TR-89-02 _5251MU :T{:T52 1:TR:S6 _51581'11:84 ___5089:T11:83 ___3340:TR:79

SCS-TR-89-01 ___52-50:TI{:87 __5212:TR:S6 _5157:TR:84 ___5086:113,:83 ___2276:TiM:7S
__CS-TR-88-22 ___5249:1R:87 _52 101'11:86 5147TT:S4 ___508211:8IR:3 _II -- CS-TR-88-21 _5217:111:87 -5207:TR:86 _5143:TR:S84 _ 50811t:8W3
-CS-TR-88-20 -52'lG:TR:87 ___5205:TI:SS -5140:TR:S4 ___507'l:TR:83 __

ii 8

I
I
I

I '¶/ *- V

I S'IBMICRON SYSTEMS ARCHITECTURE PROJECT
Department of Computer Science
California Institute of Technology

Pasadena, CA 91125

I

U Semiannual Technical Report

I

Caltech Computer Science Technical Report

Caltech-CS-TR-90-05

15 March 1990I
I

The research described in this report was sponsored by the Defense Advanced Research
Projects Agency, DARPA Order number 6202; and monitored by the Office of Naval
Research under contract number N00014-87-K-0745.

I
I

I
I

SUBMICRON SYSTEMS ARCHITECTURE

Semiannual Technical Report

Department of Computer Science

California Institute of Technology

Caltech-CS-TR-90-05

15 March 1990

I
I
SReporting Period: 1 November 1989 - 15 March 1990

Principal Investigator: Charles L. Seitz

Faculty Investigators: K. Mani Chandy

Alain J. Martin

Charles L. Seitz

* Stephen Taylor

I
U
* Sponsored by the

Defense Advanced Research Projects Agency
DARPA Order Number 6202

Monitored by the
Office of Naval Research

Contract Number N00014-87-K-0745

U
U

SUBMICRON SYSTEMS ARCHITECTURE
Department of Computer Science
California Institute of Technology

1. Overview and Summary

1.1 Scope of this Report

This document is a summary of research activities and results for the four-and-
one-half-month period, 1 November 1989 to 15 March 1990, under the Defense
Advanced Research Project Agency (DARPA) Submicron Systems Architecture
Project. Previous semiannual technical reports and other technical reports covering
parts of the project in detail are listed following these summaries, and can be ordered
from the Caltech Computer Science Library.

1.2 Objectives

The central theme of this research is the architecture and design of VLSI systems
appropriate to a microcircuit techLology scaled to submicron feature sizes. Our work
is focused on VLSI architecture experiments that involve the design, construction,
programming, and use of experimental message-passing concurrent computers, and
includes related efforts in concurrent computation and VLSI design.

1.3 Highlights

* Mosaic is ready to build (section 2.1).

9 Fully functional Memoryless Mosaic chips (section 2.1.4).

e High-density Mosaic memory (sections 2.1.2 and 4.7).

* Mosaic program-development boards (section 2.1.5).

j New message-order semantics (section 3.2).

* Cache memory for an asynchronous microprocessor (section 4.2).

* New results in transistor-sizing for asynchronous circuits (section 4.4).I
I
I

I -1-

I
2. Architecture Experiments 3

2.1 Mosaic Project

Chuck Seitz, Nanette J. Boden, Jakov Seizovic, Don Speck, Wen-King Su

The development of the Mosaic C, an experimental fine-grain multicomputer based
on single-chip nodes and a reactive-process programming model, is entering its
final stages. This system-building experiment incorporates much of what we have
learned over the past decade about the architecture, design, and programming of
multicomputers. Indeed, many of our recent contributions to the development
medium-grain multicomputers (see section 2.2), such as low-latency message-passing

networks and streamlined message handling in the node operating system, have
come directly out of our investigations of the design and programming of fine-grain
multicomputers, in which these problems are substantially more difficult.

The Mosaic C project includes numerous interacting subtasks ranging from chip
design and system packaging to programming-system development and application

studies. The fabrication of a large-scale prototype is now forcing decisions on design
options that have deliberately been left open; hence, we offer in this semi-annual
technical report a detailed status report on the entire project.

2.1.1 Architecture rationale

The Mosaic C is a member of a class of programmable, MIMD, distributed-memory,
concurrent computers called multicomputers. (See the article by Athas & Seitz in
the August 1988 issue of IEEE Computer for background.) These machines consist of
an ensemble of N programmable computers called nodes, each of which may support
many concurrent processes. Interprocess communication takes place by messages

that are conveyed and routed between nodes by a direct communication network.
Multicomputers are true VLSI architectures: They can be scaled to very large
numbers of nodes, and can exploit the performance and complexity of submicron-

feature-size microelectronic technologies. Multicomputers have proven to possess a
broad application span, and allow explicitly concurrent programs to be expressed in
a variety of programming notations.

The commercial examples of multicomputers manufactured by Intel Scientific

Computers, Symult Systems, and N-CUBE are based on a computational model,
prototype developments, and system software developed in our research project. They
are all medium-grain multicomputers in which configurations capable of substantially
outperforming conventional vector supercomputers consist of hundreds of nodes with

several MBytes of storage per node.

Shared-memory multiprocessors are not as scalable as multicomputers; however,
multiprocessors can certainly be scaled into the range of hundreds of processors, and
in this range possess some advantages over multicomputers. Among MIMD systems,

-2-

the exclusive "niche" of the multicomputer begins at about N > 210 nodes. We
understand today how to scale multicomputers to at least N = 221 nodes.

Although medium-grain machines can be scaled into the range of thousands of
nodes, economics dictates that multicomputers with large N will employ small nodes.
Consider this constant-silicon-cost argument. A medium-grain multicomputer with
N = 256 and 4MB/node requires about 1m2 of silicon in a modern 1p•m CMOS
process. About 60% of the 4,000mm 2 silicon area of each node is devoted to the
4MB of primary memory. Suppose that the essential parameters of a multicomputer
design, N and the node size, were shifted by a factor of 26, so that a machine would
consist of 16K nodes, each with 64KB of memory. Such a machine would have the
same total memory and silicon-area cost as a 256-node medium-grain multicomputer;
however, because the performance of the instruction-interpreting processor is not
reduced in proportion to its area, the aggregate peak performance of this fine-grain
multicomputer system would be significantly higher than that of a medium-grain
multicomputer. In fact, because a single node would require only about 60mm2 and
could be integrated onto a single chip, the localization of communication between

* the processor and memory allows a single-chip node to exhibit performance that is
comparable to that of the multi-chip node used in medium-grain systems.

The Mosaic C closely fits this description of a fine-grain multicomputer. It is based
on single-chip nodes, and we are working toward assembling a prototype consisting
of 16K nodes. We recognized long ago that multicomputers with single-chip nodes
were technologically the most attractive point within the space of multicomputer
designs. As was reported in 1985 (see Seitz's article in the January 1985 issue of the
CA CM), the Cosmic Cube was developed by our research group (in 1981-83) to study
the programming techniques and applications of the multicomputer systems that we
expected could be constructed with single-chip nodes by about 1991.

We expect that the Mosaic C will become the origin of a new scaling track
for multicomputers. The fine-grain, single-chip-node track offers substantially
higher performance and performance/cost than medium-grain multicomputers, and3 is centered in a niche that is beyond the scaling range of multiprocessors, while still
providing the wide application span of MIMD systems.

2.1.2 The Mosaic C node

3 Because single-chip nodes were a stipulation of the Mosaic experiment, it is most
convenient to describe this system "bottom-up," starting from the single-chip node
element.

The Mosaic C node was designed and laid out using the MOSIS SCMOS scalable-
CMOS design rules, and uses fully restored logic with two-phase clocking. It is typical
of chips designed with these rules and disciplines to be highly tolerant of process
variations. The 50C design clock rate is 40MHz at 4V in 1.2Am SCMOS, and tests

I -3-

I

I
of parts fabricated in 1.6/pm CMOS confirm that we will achieve this performance by
a considerable margin.

The major parts were initially fabricated separately for testing and yield
characterization, and are listed below:

Lambda
Part dimensions As fabricated in 1.2um CMOS

16KB 4T dRAM 14000, 7700 8.4mm x 4.6mm = 38.6 sq mm
64KB IT dRAM 14000, 12000 8.4mm x 7.2mm = 60.5 sq mm
8KB bootstrap ROM 7000, 3000 4.2mm x 1.8mm = 7.6 sq mm

Processor 4000, 3000 2.3mm x 1.8mm = 4.3 sq mmI
Router 1500, 3000 0.9mm x 1.8mm = 1.6 sq mm
Packet Interface 1500, 3000 0.9mm x 1.8mm = 1.6 sq mm

TOTAL (16KB dRAM) 14000, 10700 8.4mm x 6.4mm = 53.8 sq mm

TOTAL (64KB dRAM) 14000, 16000 8.4mm x 9.6mm = 80.6 sq mm

These dimensions are slightly exaggerated to allow for the routing space between
the parts. Allowing also for the pad frame and space to route signals to it, the 3.
chip dimensions for the version that uses the 16KB 4T dRAM will be approximately
9.0mmx7.4mm = 67mm2 , and for the version that uses the 64KB 1T dRAM will be
approximately 9.0mmx 10mm = 90 mm2 . The average power consumption for either l
design will be about 0.5W.

Because the memory uses the largest area and is the most difficult part of the
design, two alternative memory designs were developed. The 16KB 4T dRAM is
a conservative 4-transistor dynamic RAM designed as a low-risk option in case a

higher density dRAM proved to be infeasible. This 4T dRAM is based on a cross- I
coupled n-channel cell. Data bits are in double-rail form, and reading is accomplished
by precharging both data lines and then applying the word select. Writing is
accomplished by driving the data lines to complementary values and applying the
word select. The RAM performs a memory cycle on every clock cycle. In 1.2/sm
CMOS, it has an access time less than 20ns, and a cycle time of 25ns. The 64KB 1T
dRAM is an aggressive, one-transistor-per-bit design that was completed in January
1990, and will be submitted for first full-scale fabrication on the MOSIS 1.2/Lm
SCMOS run that is closing on 20 March 1990. (Several test structures have been I
fabricated and tested to verify the operation of circuits used in this dRAM.) The
design of the dRAM is described in detail in section 4.7.

The bootstrap ROM is single-transistor mask programmable, and its read-
cycle timing and organization is identical to that of the dRAM. The size listed,

corresponding to 4K words, is much larger than necessary. The self-test, initialization, I
and bootstrap functions require approximately 600 words. However, because ROM

-4- I
I

is denser than RAM, it may be useful in future systems to put standard subroutines
(such as for floating-point arithmetic) in the ROM so as to save space in the RAM.

The 16-bit, microcode-driven processor is the only source of addresses in the
node, and performs a memory cycle on every clock cycle. The processor datapath
includes 24 general registers and 12 addressing and special registers. The instruction
set is similar to that of other RISC processors, with 8 addressing modes for the
move instructions, ALU operations including integer multiply, conditional branch
instructions, a subroutine call, and control instructions. Projected performance using
our present compilers and clock-by-clock microprogram simulation is 14 MIPS (16-bit
operands).

The unusual features of the Mosaic processor are motivated by its use in a
multicomputer node. The refresh and packet-interface address control are actual!,'
part of the processor, and the processor microcode interleaves instruction executiun
from four sources: two program contexts, refresh operations, and transfer between
memory and the packet interface. The processor's address registers include two
program counters, one for user code and the other for message-system control, with
zero-time context switching between them. The two pointers and two limit registers
for the send and receive queues are also in the address register set, together with the
refresh address register. The remaining special registers control the interrupt status
of the packet interface and the dx, dy, dz values in the header of messages that are
being sent.

Either of two routers can be used. The 3D synchronous router consists of three
cascaded 1D routing automata with a 4-bit-data path. A unidirectional external
channel is 6 wires, consisting of 4 data lines, one escape bit for control codes, and
the reverse flow-control signal. Bidirectional channels in each of 6 directions for
3D routing thus require a total of 72 external pins. The bandwidth per channel
is one 4-bit data item each clock period, or 20MB/s. The 2D asynchronous
router consists of two cascaded ID routing automata with an 8-bit-data path. It
is a variant on the FMRC2 routers developed for medium-grain multicomputers.
A unidirectional external channel consists of 8 data lines, tail bit, request, and
acknowledge. Bidirectional channels in each of 4 directions for 2D routing require
88 external pins. The bandwidth per channel in the 1.2pim CMOS technology will be
approximately 80MB/s.

The packet interface includes 4 words of FIFO in each direction, the 16-bit-to-4/8-
bit and 4/8-bit-to-16-bit conversion logic, and the logic that generates the message
header on sending. The arbiter for deciding whether the system should perform
memory refresh, channel data accesses, or processor access is also in the packet
interface; the decisions that it generates are inputs to the processor microcode. The
refresh signal is an input to the chip, and is bused through an entire array of Mosaic
elements. The reason for synchronizing the refresh operation is that packets that
are bound for a node that is refreshing would otherwise be blocked into the messageI -5-

I

I
network, and block other messages that are in transit. Thus, one might as well refresh
all of the nodes at once.

The Mosaic parts are quite moaular, and can be assembled in a variety of
floorplans. The principal internal interface is the memory bus, which consists of
16 data lines, 16 address lines, +he write signal, and the clock and reset. In addition,
there are several signals between the processor and packet interface, and two channels
between the packet interface and the router.

2.1.3 Choice of network dimension

A Mosaic with 16,384 = 21' nodes can be implemented either as a 128x 128 two-
dimensional routing mesh or a 32x32x16 three-dimensional routing mesh. The
minimum bisection bandwidth of these two networks is the same: 128x80MB/s =
16x32x20MB/s = 10.24GB/s (in each direction). The significance of this figure of I
merit is that if message destinations are selected at random (a worst case), then
half of the messages must traverse the bisection. Unless a substantial amount of
internal buffering is available, the network becomes saturated at approximately half
the bisection capacity.

The usual argument that the bisection limits the total volume of messages that can
be produced and consumed by the nodes applies only to the case of randomly selected
destinations. For a 16K-node network, either 2D or 3D, this limit is 1.25MB/s per
node, or, for a typical message length of 20 Bytes, an average of one message each 16fis.
In fact, simulations of the Mosaic runtime system's process-placement strategies show
that the localization achieved in process placement reduces the number of messages
that cross the bisection to substantially less than this worst case. It may well be
possible for nodes to produce and consume 20B messages at rates in excess of one
message each 4ps.

Analyses that assume the worst case of randomly selected message destinations
favor a higher dimension network than is necessary for more localized message traffic.
Our original plan for the Mosaic was to use a 32x32x16 three-dimensional routing
mesh; however, it now appears that we will be able to save time and reduce risk by
using a 2D network.

The latency using cut-through (wormhole) routing for a packet that is not blocked
in the network is TCT = TpD + L/B, where Tp is the path-formation time through
one router, D is the distance, L is the message length (eg, in Bytes), and B is the
channel bandwidth (eg, in MB/s). For a 20Byte packet, the L/B term is 1/•s for
the 3D synchronous router and 0.251is for the 2D asynchronous router. Tp is two
clock periods, or 0.05is for the 3D synchronous router; the longest path through this
network is Dn, = 31 + 31 + 15, so the maximum path-formation time is 3.8511s. Tp
is expected to be 0.022ps for the 2D asynchronous router and the maximum path is
Dmax = 127+127, so the maximum path-formation time is 5 .6 1As. In fact, for localized

-6- H
I

messages or longer messages (such as are encountered in program loading), the 2D
network outperforms the 3D network.

Given the similar performance of these two networks, there are several other
arguments in favor of using the 2D network:

1. The asynchronous 2D network eliminates the problems of coherent clock
distribution required by the synchronous 3D network.

2. The protocol for the asynchronous 2D network is identical to that used in
the Symult S2010 medium-grain multicomputer and the Intcl Touchstone Delta
prototype; thus, we would be able to employ the same host interfaces and other
special devices (eg, displays) on either type of system.

3. The 2D packaging is considerably simpler, cheaper, and lower risk than the 3D
packaging, and reduces the number of interboard connections by nearly a factor
of four.

There is also an interesting issue of network scaling as it relates to our research agenda.
The bisection argument presented above shows that the scaling of a mesh or torus

_ network of given dimension is forced to the next higher dimension only when the radix
(number of nodes on one dimension) becomes too large. The actual numbers show
that 128 is close to the practical limit for the radix. Thus, if we can demonstrate
that a 128x128 network and the localization accomplished by our runtime system
still allow efficient execution with fully automatic process placement, we have also
demonstrated that efficient execution would scale readily (with the problem size also
scaling) to an N = 128x128x 128 = 221-node system!

Another part of our long-term research agenda is to consider whether the third
dimension should be reserved not for another dimension of mesh, but for long-
distance connections; for example, a free-space optical shuffle. This consideration
adds additional hesitancy to using the third dimension prematurely.

2.1.4 The Memoryless Mosaic chip

The Memoryless Mosaic chip has been a key part of our system-d,--elopmernt stramt-"
for the Mosaic. This chip (see the plot on the following page) is a complete Mosaic
element except for th- ROM and dRAM. It includes the Mosaic processor, packet
interface, router, clock driver, and bus arbitration logic. The address and data buses
are brought off of the chip; thus, the Memoryless Mosaic chip has allowed us to test
the logic sections of the Mosaic under conditions in which the memory address and
data are observable, and the memory data are controllable. It would otherwise be
extremely difficult to diagnose internal problems in the Mosaic node, because the
router, packet interface, and processor must function correctly in order to test them!

Extensive testing uncovered a design error in November 1989 in the first silicon of
the Memoryless Mosaic, which was fabricated by MOSIS in 1.6/im SCMOS. The bug
was in the packet-interface section, and was eventually traced to a missing 4Ax4A

I -7-

I

I
I
I
I
I
I
I
I
U
I
I
I
I
I

�. ... - .f-�.... � � . - - - - -- - - .�. I
U
I

Memor-yless Mosaic c/sip

-8-

U

patch of first-metal on one of the clock lines. This bug was not discovered during
switch-level (Cosmos) simulation because the clock was supplied through an alternate
path via a poly wire. This kind of error would ordinarily be expected merely to limit
the speed of correct operation. However, in the Mosaic chip, it caused the control
signals derived from the supposedly non-overlapping clock phases to overlap. The
clock phases are generated on-chip, without the possibility of adjusting the non-
overlapping time. As a result, several shift registers in the packet interface failed
to operate correctly at any frequency. The detailed study of the FIFO section of
the packet interface revealed ways of making it more robust, so this section was
redesigned.

The corrected chip was submitted to MOSIS for 1.6yrm SCMOS fabrication on 8
January 1990, and the revised parts were received on 14 March 1990. Preliminary
tests indicate that the problem with the packet interface has been corrected, and the

chips are fully functional.

To test the logic sections of the Mosaic in the target 1.214m SCMOS technology,
a Memoryless Mosaic with a new pad frame was submitted to the MOSIS 1.2prm
SCMOS run that closes on 20 March 1990.

2.1.5 Program-development systems

The other important application of the Memoryless Mosaic chip is to accelerate
*porting the programming systems, particularly the operating and runtime systems,
from simulators to hardware. This bootstraping step is on the critical path of
developing a useful system, and is also typically more difficult for multicomputers
and other distributed-memory systems than it is for shared-memory systems. The
observability and diagnosis of operating-system faults is problematic until the
operating system is itself reliable.

We are able to get a head start on porting programming systems and application
programs to the hardware, and also to simplify the operating-system-porting task,
by building program-development systems that are based on the Memoryless Mosaic
chips. These 6U VME boards (see the illustration on the following page) include

4 Memoryless Mosaics, which are connected by their channels in a 2x× mesh. The
external memory of each of the Memoryless Mosaics is 128KB of SRAM, which is two-
ported to be read and written either by the Mosaic or through the VME interface.
The clock rate is 20MHz. The SRAM is accessed by the Mosaic most of the time,
and by the VAME interface by cycle stealing. When the VME interface requests a
memory access, the clock generator PAL stops the Mosaic clock signal for one clock
period. While the Mosaic clock is stopped, the VME memory access is granted. The
Mosaic clock and reset can also be controlled by memory-mapped storage locations.
The logic design of these VME boards was just completed, and they are being sent
to a commercial PCB house for layout and fabrication.

The completed boards will be plugged into the VME interfaces of our Sun

-9-

TZL -., -. n7 iir a 11 0198- I
0~~~ I1UO = .

t a =200O um2ýru
--- -- 0Al 0 au~tas3

0 r =
q IlIUUUg Vo eug 0~ ~BUUI

Eal ~ u~f ffP *fl -------.P~ ~ .t 8 -0a h

U 3E
a f~~ UIs x t UEUATU .. U I -t BrT I v8Uvv t

ff)8C8 gua aak % a W I t3SD

8 9aeu a. 0 0a ug u

uuazu,~ a ý9 .uE g au - l

[Lj m.!K.A Ij .gqggg

0 0~~ M = 0Er

m gfass I
£33Cb~ U*-f~ M

a -
-

aa

it 9 -2 a gUaF

Mosgaicprgra m-e vcope b ,oardas

I
workstations or Symult S2010 systems. The host system will not only be able to
load the memory of the nodes directly, but can also monitor program execution by
examining the memory contents.

We expect in approximately three months to build another version of this
program-development system for Memoryless Mosaics that use the asynchronous
router. It will be possible to connect these boards together to form larger meshes,
and to use these boards as host interfaces for larger Mosaic systems.

I 2.1.6 Packaging

Preliminary packaging designs for both 2D and 3D Mosaic systems have been
completed. Both approaches use compression connectors to connect small circuit-
board modules that are the testable and interchangeable units of manufacture, repair,
and replacement. The Mosaic elements will be packaged and connected to the small
circuit boards using TAB packaging.

The 4.2inx2.6in module for the 3D Mosaic contains 8 nodes in a 2x2x2
configuration with 320 external connections on two opposite edges. These modules
are stacked between motherboards to create the 3D-packaging configuration. The
3D system is cooled by forced air in a direction parallel to the second dimension of
routing.

The 4.2inx4.2in module for the 2D Mosaic contains 16 nodes in a 4x4I configuration with 400 external connections on all four edges. These modules are
mounted to a power-distribution frame, and adjacent edges are joined by a single

j bridging connector.

j 2.1.7 Programming systems

The Mosaic can be programmed using the same reactive-process model that is used
for the medium-grain multicomputers that our group has developed. However, the
small memory in each node dictates that programs be formulated with concurrent
processes that are quite small.

The Cantor programming system supports this style of reactive-process program-
ming by a combination of language, compiler, and runtime support. The programmer
is responsible only for expressing the computing problem as a concurrent program.
The resources of the target concurrent machine are managed entirely by the pro-
gramming system. Although Cantor was developed specifically for programming the

Mosaic, Cantor programs can also be run today on medium-grain multicomputers,
multiprocessors, sequential computers, and the Mosaic simulators.

The Mosaic can also be programmed at a lower level by using scaled-down versions
of the C-based programming systems (Cosmic C, Reactive C) that we have developed
for and used with medium-grain multicomputers.I -ll-

I

I

These programming systems are quite stable and powerful. The continued
improvement of these systems depends principally on progress in our related research
efforts (see sections 3.1-3.4).

2.2 Second-Generation Medium-Grain Multicomputers*

Chuck Seitz, Joe Beckenbach, Christopher Lee, Jakov Seizovic, Craig Steele, I
Wen-King Su

Our principal current research efforts with medium-grain multicomputers are aimed
at new versions of our reactive-process programming systems and at advances in the

performance of our mesh-routing chips. Our Caltech project continues to work closely
with the DARPA-supported Touchstone prcject at Intel Scientific Computers. Our
contributions include the architectural design, message-routing methods and chips,
and system software. (See section 3.3 for a summary our current efforts with the
Cosmic Environment and Reactive Kernel systems, and section 4.5 for a summary of
our efforts with mesh-routing chips.)

The project operates several multicomputers: 8-node and 64-node Cosmic Cubes,
a 128-node Intel iPSC/1, a 16-node Intel iPSC/2, and 32-node and 192-node Symult
S2010 systems. The 192-node S2010 system is now the preferred machine for users. It
is accessed through the Caltech Concurrent Supercomputer Facilities, and utilization
has been at a level of approximately 90% of the available node-hours. All of these
systems run very dependably.

Copies of the Cosmic Environment system have been distributed on request

to approximately ten additional sites during this period, bringing the total copies
distributed directly from the project to over 200.

I
I

I
I

* This segment of our research is sponsored jointly by DARPA and by grants

from Intel Scientific Computers (Beaverton, Oregon) and Symult Systems (Monrovia, I
California).

-12- I

I

I
* 3. Concurrent Computation

3.1 Runtime Systems for Fine-Grain Multicomputers

Nanette J. Boden, Chuck Seitz

We have been investigating several research problems that have emerged from our
efforts to develop runtime systems for fine-grain multicomputers such as the Mosaic.
These efforts are aimed at removing a number of restrictions on programming fine-
grain multicomputers.

One easily understood example is the management of the node receive queue.
A computation executing on the Mosaic will always consume a certain amount of
space in each node for the runtime system itself, process code, process tables, and
the persistent variables of the processes. The remaining space, which might be only
one thousand bytes or so, can be used by the send and receive queues. Suppose that
the computation involved a temporary "hot spot" that causes the receive queue in a
node to overflow. When processes are able to exercise discretion in receiving messages
selectively by their type or contents, they may not be able to consume the contents
of the receive queue. In the present runtime systems, this is a deadlock, and the

computation terminates.

It is, however, a serious flaw if a system with 1GB of memory, perhaps hundreds
of MBs unused, might not be able to proceed because of a local fluctuation of a few
hundred bytes. This problem also exists in medium-grain multicomputers, but is
generally masked by the large size of the node memory. The solution is to export a
part of the receive queue temporarily to another node, and, if necessary, to secondary
storage. Indeed, several possible advances in system robustness and performance
depend on introducing distributed solutions to resource-allocation problems.

Adding this kind of robustness to multicomputer programming systems is an
example of the 80/20 rule: 80% of the sophistication in a runtime system is
required to deal with the 20% residue of "difficult" cases and programs. Indeed,
the compilation and runtime algorithms and heuristics for managing space without
undue restrictions on the programmer, automatic process placement, managing the
process-name space, determining code placement, and performing automatic code
partitioning are remarkably subtle. They are also quite challenging when they must
be implemented under serious constraints on both execution time and storage space.

Fast, efficient process placement is the key to several of these problems. Through
analytical methods and simulation, we are exploring the spectrum from randomized to
systematic node selection, that is, from methods depending entirely on randomization
to methods that bias a random choice toward a local region or direction of growth, to
methods that perturb a deterministic choice with "flip bits," to purely deterministic
methods. A computation can be modeled for these purposes as an evolving population

of processes. Each process on each timestep has a certain probability of creating
another process or of self-destructing. Simulation approaches permit a realistic

1-13-

I

I
complexity in the algorithms and heuristics being evaluated, and the incorporation of
realistic machine models. However, these investigations are still somewhat removed
from reality. Different resource allocation strategies may be more nearly optimal
depending on the actual characteristics of application programs. In the analytical I
approach, the probabilities of process creation and of process self-destruction must
be estimated; in simulation, randomized instances of "typical" programs must be used
as input. The Mosaic system will allow us to refine the more promising approaches
on full-scale application programs.

3.2 Composition Properties of Reactive-Process Programs

Nanette J. Boden, Chuck Seitz

The properties of adaptive-routing message systems, which may appear in future
multicomputers, have numerous implications at levels ranging from the programming
model to the the runtime support. The most attractive distributed approach to I
retaining message-order preservation is based on a reply-message protocol. It happens
that this approach introduces a slightly stronger synchronization than the semantics
supported in our current message-passing programming systems, in which message
order is preserved only between pairs of communicating processes. The reply-message
protocol allows the sending process to determine when a message is actually in
the receive queue of the destination process, so that subsequent messages to "third
parties" cannot lead to messages that precede the first message in the receive queue.

This stronger form of synchronization also has composition properties that are
more uniform than -,hose exhibited by our present message semantics. Curiously, it
is also possible to obtain uniform composition properties by weakening our present
message semantics into the unordered-message form of Actor semantics, but we
can show that at least a weak form of message-order preservation is required to
express certain computations efficiently. Uniform composition properties are not only
desirable when attempting to reason about a program, they are also critical for being
able to re-express a large process as a collection of small processes, either by hand or
automatically. We are continuing to study the possibility of supporting this strongern
(but compatible) form of message-order preservation in future systems.

3.3 The Cosmic Environment and Reactive Kernel I
Wen-king Su, Jakov Seizovic, Chuck Seitz, Joe Beckenbach, Christopher Lee

Our plans for the development of new versions of the Cosmic Environment host I
runtime system and the Reactive Kernel node operating system were outlined in
our previous semiannual technical report, and the work is in progress.

Version 7.2 of the Cosmic Environment has matured after enduring more than
two years of academic and commercial applications. Based on our experiences with

the Cosmic Environment, we are now in the position to suggest and implement major I
changes in the internal structure of the Cosmic Environment. One of the problems in

-14-

Ii

version 7.2 is the centralized multicomputer allocation and bookkeeping mechanism
that places the Cosmic Environment at the mercy of network conditions. We have
designed a robust distributed mechanism in which allocation is performed in the
host of the multicomputer itself. Thus, the multicomputer would be inaccessible
only when its host is inaccessible. We have also demonstrated a technique that
increases the Cosmic Environment communication bandwidth from 40Kbytes/second
to 300Kbytes/second with a small increase in message latency. We eliminate the
need to perform extra handshakes across slow ethernet links by shifting the burden of
buffering messages from the multicomputer's host machine to the user's host machine.
We have also found a way to increase the message delivery rate for selected user
processes, such as a frame buffer controller, by allowing the process to be merged
with the message switcher process, thus saving one communication cycle and context-
switch time for each message.

3.4 The Page Kernel

Craig S. Steele, Chuck Seitz

The previously-described "Page Kernel" (PK) concurrent programming environment
is an evolutionary variant of the reactive kernel (RK). PK utilizes the virtual-memory
capabilities of second-generation medium-grain multicomputers to render message
origination and receipt implicit, and to move the low-level management of data
sharing from the programmer to the kernel. Continuing development of the PK has
resulted in simplification of the programming model and extension of its capabilities.

The executable unit is the action, a light-weight reactive process scheduled in
response to modification of associated data structures (blocks). The programmer is
responsible for writing code to specify which data blocks are accessible to each of the
actions. Defining the multiple address spaces of the actions and coding the operations
of the actions is the programmer's task; action scheduling and data communication
are handled by the kernel.

Another common function appropriated to the kernel is the management of
mutually-exclusive writing to data blocks shared by multiple actions. Rather
than locking data with potential write conflicts, action.- are allowed to proceed to
completion before actual conflicts axe evaluated. If an action is excluded from writing
its results to a shared data block due to another action's access, it fails and none
of its results axe written to any data block. The action is undone with no visible
effect, and it is rescheduled for later execution. This mechanism involves considerable
data copying and duplication, but the additional cost is quite modest with second-
generation multicomputer communications hardware; for example, it incurs about
25% in increased execution time on the Symult S2010. This implementation allows
greater concurrency for problems with more potential than actual conflicts.

The PK is expected to be an attractive alternative programming environment for
problems such as iterative optimization, in which the mechanics of distributing and

* -15-

U

I

updating shared data structures may obscure the relative simplicity of a concurrent
algorithm.

3.5 A C-Based Concurrent Programming Language For Multicomputers I
Marcel van der Goot, Alain Martin

As described in the previous semi-annual report, we are defining and implementing I
a concurrent programming language for message-passing multicomputers. We have
chosen C as the basis for the sequential parts of the language; the extensions that
support concurrent programming include processes and CSP-like communication
primitives. A first implementation, consisting of a compiler and a small runtime
system, was finished in February 1990. The compiler takes our language as input and
has standard (ANSI) C as target; the runtime system contains functions to support
the concurrent execution of processes. The output of our compiler is compiled for a
SUN workstation where it is executed as a single UNIX process.

So far, the compiler has been used by the students in a concurrent programming
class, and to write a (functional) simulation of the asynchronous microprocessor.
Since the specification of the microprocessor is in a language similar to ours, the
simulation program was relatively easy to write. Currently, we are working on

documentation and on porting the implementation to an actual multicomputer (the I
Symult S2010, or any other multicomputer that runs CE/RK), together with some
reorganization of the compiler. We expect that neither the compiler nor the runtime
system will require much rewriting for this parallel implementation.

II
I
I
I
I
I

-16-I

I

4. VLSI Design

4.1 Automatic Synthesis of Asynchronous Circuits

Draien Borkovii, Steve Burns, Alain J. Martin

The second generation of synthesis tools that we envision will integrate simulation,
performance evaluation, and optimization (transistor sizing). The designer will be
able (or perhaps will be required) to make choices at different stages of the synthesis
based on the results of the previous stage. As a first step toward such a system, we
are designing a program for the synthesis of straightline program into CMOS chips.
The final program will include automatic cell synthesis, transistor sizing, placement
and routing.

4.2 Cache Memory for an Asynchronous Microprocessor

Alain J. Martin, Jos6 A. Tierno

The design of a direct-mapped instruction cache for an asynchronous microprocessor
is almost completed. The circuit has been derived from a high-level specification,
and both control circuitry and RAM array are completely delay-insensitive with the
exception of isochronic forks. Special attention was paid to the design of the RAM
cell, to optimizing the signaling protocol, and to eliminating unnecessary transitions
and completion trees. The full (conservative) implementation requires 13 transistors

per memory cell, of whicb 3 can be eliminated at the expense of a bigger delay. The
RAM array has a special read-write cycle. The rest of the control was designed around
this cell, since the bottleneck in throughput will be in the access to the RAM array.

4.3 Testing Self-Timed Circuits

Pieter Hazewindus, Alain J. Martin

We are studying the problem of increasing the fault coverage of our designs by adding
testing circuitry to the circuits. The fault model we use is the single stuck-at fault
model. For any non-redundant circuit, if we can set and observe the value of each
state-holding element, then all faults are testable. Since it is infeasible to connect
every state-holding element to a pad, we use as testing circuitry a simple queue that
connects all state-holding elements. For such a scheme, the only untestable faults
would be located in the queue.

We have designed a testing queue that has twelve transistors per stage. For

normal circuit operation, the penalty for having the testing circuitry is just one
pass gate, so that the decrease in performance is minor. For the control of the
microprocessor, the number of transistors in the clocked testing queue is about half
the total number of transistors. We are trying to reduce the size of the testing queue

by reducing the number of state-holding elements observed. It seems that possible

global optimizations, at the program level or otherwise, are rare, but some ad hoc or
local optimizations are possible.

* -17-

I

I

4.4 Sizing the Transistors of Asynchronous Circuits

Steve Burns, Alain Martin

We have developed a method of optimally sizing the transistors contained in the 3
asynchronous circuits that we construct by systematic transformation from concurrent
programs. These transistors are sized optimally if the sizes minimize the time needed

to operate the circuit, minimize the energy required to operate the circuit, or minimize I
some other metric of performance.

The concerns of performance optimization in asynchronous circuits are quite
different than those of synchronous (clocked) circuits. In the synchronous cases,
the main task is to determine and then speed up the slowest or critical path through
the combinational logic that connect the clocked latches. This is in order to maintain I
correctness, since for correct operation, the combinational logic must complete before
the clock changes.

In the asynchronous circuits derived using our synthesis method, the circuits
work correctly regardless of delays in the primitive gates. For most applications (i.e.,
those without hard real-time deadlines), it is not necessary to optimize the worst
case (or even to know what it is). Rather, it is the average case that determines a

circuit's performance. While an operation that requires twice the time but occurs
only once every one hundred operations is catastrophic to a synchronous design, itI'
only decreases the performance of our asynchronous circuits by one percent.

Much of the computation involved in the performance analysis of synchronous
circuits, in particular that of determining the critical paths induced by unusual data
patterns, can be avoided by using our asynchronous methodology. An average or
typical operation sequence is specified and a performance metric is determined based U
on that sequence. Since our asynchronous circuits work correctly regardless of gate
delays, it turns out that the performance metric is a convex function of the transistor

sizes and thus each local minimum to the function is also a global minimum. The I
techniques of convex non-linear programming can be used to find these optimal sizes.
A C program has been written to perform these calculations. Optimal transistor sizes

for a typical 40 transistor circuit can be obtained in under 10 seconds on a SUN 3/60.

4.5 Fast Self-Timed Mesh-Routing Chips 3
Chuck Seitz

A new version in the FMRC series of mesh-routing chips has been laid out, verified 3
by switch-level simulation, and sent to fabrication for the 1.2pm MOSIS SCMOS

run that is scheduled to close on 20 March 1990. Previous FMRC chips have been
fabricated in 1.6pm SCMOS, and operate at 65MB/s, but exhibit some reliability 3
problems when the aggregate throughput of the chip's 5 output channels exceeds
about 250MB/s. This reliability problem was traced by analysis and simulation to

collapse of the internal power supply under these demanding conditions; thus, it is I
properly a failure of the packaging rather than of the chip design.

-18- I

I

This 132-pin chip devotes the 20 lowest-inductance PGA-package pins to Vdd
and GND. It was not deemed to be practical for the immediate application (the
Intel Touchstone Delta prototype) to increase the pinout to allow additional Vdd and
GND pins; however, it was considered to be desirable to increase the speed to in
excess of 80MB/s. Intel is tooling a special package whose internal power and ground
planes reduce the inductance of the power distribution from the package by a factor
of approximately two. However, in designing new pad circuits and pad frame for the
FMRC, I decided to take all available measures that might improve the reliability of
these chips.

With the support and encouragement of Wes Hansford at MOSIS, we were able
to reduce the pad pitch from 6 mils to 5 mils, with a 90#m square pad. The resistance
of the pad-power ring was reduced in comparison with our standard 1.6pm pads by
a factor of nearly four by a combination of increased width and use of both metal

layers where possible. The peak pad-drive current was reduced to about 0.75 of its
value for the 1.6/im pad drivers, and the p/n ratio was reduced from 5/3 (which
produces symmetrical transitions in the 1.6jsm process) to 4/3 to compensate for
the transistors being farther into velocity saturation. Additional speed in the core
of the router will more than make up for the slightly slower pads. These measures
reduce the total current and ohmic drops; they also decrease di/dt effects of the
package-pin inductance. As additional measures to reduce the di/dt effects, nearly
all of the "white space" in this pad-limited design was ,ised to add power-decoupling

capacitance, which is believed to be more than 500pF. The drive of the output pads
was also tuned to minimize difdt. (A plot of the chip is shown on the following page.)

The design and layout of a successor to the FMRC is underway.

4.6 Adaptive Routing in Multicomputer Networks

Mike Pertel, Chuck Seitz

Previous theoretical studies of adaptive multipath routing are being continued, and an
adaptive router for the Mosaic is being designed. Under simulation, adaptive routers

have exhibited superior throughput, traffic diffusion, and fault tolerance, as compared
with oblivious routers. Further simulation is being used to refine and simplify the
routing discipline before committing to silicon.

4.7 High-Density Mosaic dRAM

I Don Speck

Multicomputers have been tending toward more memory per node as they get faster,
and Mosaic is no exception. Having more never hurts, and it extends the application

range and ease of programming. Therefore, when the Mosaic C design began, design
of a dense dynamic memory began with it. The simulation and layout of a 32Kx16
dynamic RAM is now complete, and ready for first fabrication in the A = 0.6,um
MOSIS SCMOS process. This 64KB memory is half as much as in a Cosmic Cube

-19-

I

I
I
I
I

I

I
I
I

____________ I
I

I
I

I
I

FMI? 02.2 mesh-routing chip N
-20-

I

node, and is the largest power-of-2 size smaller than Mosaic C's addressing limit. It
is also the largest area (13470A x 11974A) that doesn't need repeaters in all of the
wires, and is about 75% of the total chip area (which is how much was budgeted for
RAM).

The design of this dynamic RAM attempted to simultaneously optimize area,
energy, speed, and noise immunity. Small area is the primary reason for choosing
a one-transistor-per-bit style instead of something easier to analyze (otherwise why
bother?), and it also helps shorten the long wires that contribute to delay and power
consumption. Power dissipation is at a premium in large ensembles of closely-packed
nodes, and the only way to significantly reduce total chip power is to reduce the
power supply voltage to 4V or even 3.3V; for wafer-scale packaging, 2.5V would
be required. In addition, a safety factor of plus or minus 20% is needed to allow
for process variations. Over such a wide operating range, it is not possible to
meet a fixed speed and noise immunity specification regardless of voltage, nor is
it necessary. The RAM only has to keep up with the processor, whose speed varies
with voltage, and the noise immunity has to exceed noise generation, which also varies
with voltage (quadratically in the case of resistive drops, less than linearly for the
backgate component of threshold variation).

To accommodate the processor on the same chip and have access to the smallest
feature size of the day, the RAM uses a standard MOSIS logic process and is designed
to satisfy all of the Magic DRC rules for the most restrictive process, in either nwell
or pwell. (The latter disallows boosted signals). The best bit storage capacitor in
that process is an enhancement-mode MOS capacitor, which has low charge-storage
density and cannot store the full power supply voltage range. These are the same
limitations that the early commercial dRAM designers faced, so the support circuits
that worked well then also turn out to be good choices for this RAM.

Making the cell capacitor large to compensate for low charge-storage density is
subject to diminishing returns. The bitline length and capacitance grow with the cell
capacitor. Larger depletion regions collect more minority carriers from alpha-particle
strikes. Larger MOS capacitors are slower and cannot be charged as fully in the
time available; even with a modest capacitor size, writing has to start very early to
approach full charge. Beyond some point, the area is better used elsewhere, such as
for more sense amps, and this point is about 64A2 . This is just big enough for a half-
sized dummy cell to be feasible. A full-sized dummy cell would need a half-charge
reference voltage, which is not Vdd/ 2 due to the MOS capacitor threshold. At the
lowest operating voltage, the capacitor cannot even store Vdd/2.

The small bitcell has room for only one bitline through it, and, without a second
poly layer, this mandates an open bitline arrangement. Open bitlines require more
careful matching of noises on opposite sides of the sense amp than do folded bitlines.
There is no place to put transistors to short together bitline pairs; instead, oversized
prechargers short all bitlines to an equilibration line, which then connects to Vdd only
at its center tap, to equalize power glitches. The substrate has similar equilibration

-21-

I

wires center-tapped to ground spaced 16 bitlines apart, taking up about 5% of the
RAM area.

These noises can't be perfectly matched, so it is advisable to make the readout
voltage large in comparison, in this case by keeping the bitlines short - only 32
bitcells - resulting in a 6:1 bitline-to-cell capacitance ratio. The sense amplifiers
have to be small and simple to avoid dominating the total area, but a simple cross-
coup'ed pair suffices when the signal voltage is large and bitline capacitance is low.
Low bitline capacitance also makes full-Vdd precharge affordable, which is needed

anyway because at the lower supply voltages (eg, 2V), Vdd/ 2 precharge wouldn't be i
enough to turn on the sense-amp transistors. The column-select transistors double as
cascodes that isolate the bitlines from the I/O line capacitance until the bitlines fall
a threshold below Vdd. Area-consuming level-restore circuits are not needed on the
sense amps, because the storage capacitor cannot store full voltage levels, but one is
used on the I/O lines in case the bitlines fall far enough for the cascodes to slowly

leak.

There are 8192 sense amps but only 16 bits need be read or written at
once. There is neither need nor room for a read/write amplifier per sense amp. I
Fortunately, the bitline pitch is larger than minimum metal spacing, leaving enough
room to intersperse column select lines from a shared column decoder, controlling

the multiplexing of 64 sense amplifiers onto 2 read/write amplifiers via I/O lines
perpendicular to the bitlines. Space has to be made periodically for read/write
amplifiers to keep the I/O line capacitance low enough to be driven quickly by the
sense amplifiers, providing a good place to insert row decoders that keep the wordlines i

short enough to run in poly without metal strapping. Strapping the wordlines would

have increased bitline capacitance by 10%; the increase in bitcell area needed to l
counteract this would have been more than the row decoder area.

The short bitlines and wordlines divide the RAM into 8 by 8 banks. To keep each
data bus wire under 12000A, only 2 bits connect to each bank, so 8 banks must power

up on each cycle. About half of the power consumed goes into address distribution,
decoding, and clocks. If prechargers in unselected banks were turned on and off i
every cycle, that would add 25% to the power consumption (all from the clocks);
instead, the first three address bits control them. Precharge turn-on needs to wait

anyway until the wordlines finish falling; hence, it is controlled by a delay line. This I
obviates any need for a second clock phase, saving clock wiring and its attendant

power dissipation.

The sense amplifiers are on a 10.5A pitch; this demands that they be connected
common-source to a current generator. The amount of current a sense amp receives

depends both on its own bitline voltages and on the bitline voltages of other sensei
amps. Initial current is set low, so that sense amps receiving the most current get no
more than is safe, although this means that some sense amps receive none at first. As

the sense amps with an early start develop signal, current is ramped up until all sense $
amps are conducting. Further current increases are delayed until the late starters

-22-

I

catch up, then a larger current ramps up. The sense timing generator ramps up
voltages on transistor gates via current mirrors, and fits underneath the row decoder
address wires along with a delay line to simulate the wordline delay.

AREA BREAKDOWN:
bitcells 61%
sense amps, prechargers, dummy cells 15%
power/ground wires 11%
row decoders 8%

-23-

U
California Institute of Technology

Computer Science Der artment, 256-80
Pasadena CA 41125

Technical Reports
16 March 1990

Prices include postage and help to defray our printing and mat.I"1 costs.

Publication Order Form
To order reports fill out the last page of this publication form. Prepayment is required for all materials. Purchase orders
will not be accepted. All foreign orders must be paid by international money order or by check for a minimum of $50.00
drawn on a U.S. bank in U.S. currency, payable to CALTECH.

CS-TR-90-03 $3.00 Program Composition Project
Chandy, K Mani with Stephen Taylor, Carl Kesselman and Ian Foster

CS-TR-90-02 $2.00 Limitations to Delay-Insensitivity in Asynchronous Circuits
Martin, Alain 3

CS-TR-90-01 $3.00 Properties of the V-C Dimension, MS ThesisC Fyfe, Andrew

CS-TR-89-12 $3.00 Submicron Systems Architecture
ARPA Semiannual Technical Report

CS-TR-89-11 $9.00 Reactive-Process Programming and Distributed Discrete-Event Simulation, PhD Thesis
Su, Wen-King

CS-TR-89-10 $7.00 Silicon Models of Early Audition, PhD Thesis
Lazarro, John

CS-TR-89-09 $15.00 Framework for Adaptive Routing in Multicomputer Networks, PhD Thesis
Ngai, John

CS-TR-89-07 $6.00 Constraint Methods for Neural Networks and Computer Graphics, PhD Thesis
Platt, John

CS-TR-89-06 $1.00 First Asynchronous Microprocessor: The Test Results
Martin, Alain J, Steven M Burns, T K Lee, Drazen Borkovic, and Pieter J Hazewindus

CS-TR-89-05 $2.00 Essence of Distributed Snapshots
Chandy, K Mani

CS-TR-89-04 $5.00 Submicron Systems Architecture Project
ARPA Semiannual Technical Report

CS-TR-89-03 $3.00 Feature-oriented Image Enhancement with Shock Filters, I
Rudin, Leonid I with Stanley Osher

CS-TR-89-02 $3.00 Design of an Asynchronous Microprocessor
Martin, Alain J

CS-TR-89-01 $4.C0 Programming in VLSI From Communicating Processes to Delay-insensitive Circuits
Martin, Alain J

CS-TR-88-22 $2.00 Variants of Lhe Chandy-Misra-Bryant Distributed Discrete-Event Simulation Algorithm
Su, Wen-King and Charles L Seitz

CS-TR-88-21 $3.00 Winner-Take-All Networks of O(N) Complexity
Lazzaro, John, with S Ryckebusch, M A Mahowald and C A Mead

CS-TR-88-20 $7.00 Neural Network Design and the Complexity of Learning

Judd, J Stephen
CS-TR-88-19 $5.00 Controlling Rigid Bodies with Dynamic Constraints

Barzel, Ronen

CS-TR-88-18 $3.00 Submicron Systems Architecture Project

ARPA Semiannual Technical Report

S CS-TR-88-17 $3.00 Constrained Differential Optimization for Neural Networks
Platt, John C and Alan H Barr

J1

Caltech Computer Science Technical Reports

CS-TR-88-16 $3.00 Programming Parallel Computers
Chandy, K Mani

CS-TR-88-15 $13.00 Applications of Surface Networks to Sampling Problems in Computer Graphics, PhD Thesis
Von Herren, Brian

CS-TR-88-14 $2.00 Syntax-directed Translation of Concurrent Programs into Self-timed Circuits
Burns, Steven M and Alain J Martin

CS-TR-88-13 $2.00 Message-Passing Model for Highly Concurrent Computation
Martin, Alain J I

CS-TR-88-12 $4.00 Comparison of Strict and Non-strict Semantics for Lists, MS Thesis
Burch, Jerry R

CS-TR-88-11 $5.00 Study of Fine-Grain Programming Using Cantor, MS Thcsis
Boden, Nanette J

CS-TR-88-10 $3.00 Reactive Kernel, MS Thesis
Seizovic, Jacov I

CS-TR-88-07 $3.00 Hexagonal Resistive Network and the Circular Approximation
Feinstein, David I

CS-TR-88-06 $3.00 Theorems on Computations of Distributed Systems I
Chandy, K Mani

CS-TR-88-05 $3.00 Submicron Systems Architecture

ARPA Semiannual Technical Report I
CS-TR-88-04 $3.00 Cochlear Hydrodynamics Demystified

Lyon, Richard F and Carver A Mead
CS-TR-88-03 $4.00 PS: Polygon Streams: A Distributed Architecture for Incremental Computation Applied to Graphics,I

MS Thesis
Gupta, Rajiv

CS-TR-88-02 $4.00 Automated Compilation of Concurrent Programs into Self-timed Circuits, MS Thesis I
Burns, Stephen M

CS-TR-88-01 $3.00 C Programmer's Abbreviated Guide to Multicomputer Programming
Seitz, Charles, Jakov Seizovic and Wen-King Su

5258:TR:88 $3.00 Submicron Systems Architecture
ARPA Semiannual Technical Report

5256:TR:87 $2.00 Synthesis Method for Self-timed VLSI Circuits
Martin, Alain. (current supply only: ace Proc. ICCD'87: 1987 IEEE Int-l. Conf. on Computer
Design 224-229, Oct'87)

5253:TR:88 $2.00 Synthesis of Self-Timed Circuits by Program Transformation

Burns, Steven M and Alain J Martin
5251:TR:87 $2.00 Conditional Knowledge as a Basis for Distributed Simulation

Chandy, K Mani and Jay MisraI

5250:TR:87 $10.00 Images, Numerical Analysis of Singularities and Shock Filters, PhD Thesis
Rudin, Leonid Iakov

5249:TR:87 $6.00 Logic from Programming Language Semantics, PhD Thesis

Choo, Young-il

5247:TR:87 $6.00 VLSI Concurrent Computation for Music Synthesis, PhD Thesis
Wawrzynek, John

5246:TR:87 $3.00 Framework for Adaptive Routing
Ngai, John Y and Charles L Seitz

5244:TR:87 $3.00 Multicomputers

Athas, William C and Charles L Seits z
5243:TR:87 $5.00 Resource-Bounded Category and Measure in Exponential Complexity Classes, PhD Thesis

Lutz, Jack H

2

Caltech Computer Science Technical Reports

5242"TR:87 $8.00 Fine Grain Concurrent Computations, PhD Thesis
Athas, William C

5241:TR:87 $3.00 VLSI Mesh Routing Systems, MS Thesis
Flaig, Charles M

5240:TR:87 $2.00 Submicron Systems Architecture
ARPA Semiannual Technical Report

5239:TR:87 $3.00 Trace Theory and Systolic Computations
Rem, Martin

5238:TR:87 $7.00 Incorporating Time in the New World of Computing System, MS Thesis
Poh, Hean Lee

5236:TR:86 $4.00 Approach to Concurrent Semantics Using Complete Traces, MS Thesis
Van Horn, Kevin S

5235:TR:86 $4.00 Submicron Systems Architecture
ARPA Semiannual Technical Report

5234:TR:86 $3.00 High Performance Implementation of Prolog
Newton, Michael 0

5233:TR:86 $3.00 Some Results on Kolmogorov-Chaitin Complexity, MS Thesis
Schweizer, David Lawrence

5232:TR:86 $4.00 Cantor User Report
Athas, W C and C L Seitz

5230:TR:86 $24.00 Monte Carlo Methods for 2-D Compaction, PhD Thesis
Mosteller, R C

5229:TR:86 $4.00 anaLOG - A Functional Simulator for VLSI Neural Systems, MS Thesis
Lazzaro, John

5228:TR:86 $3.00 On Performance of k-ary n-cube Interconection Networks
Dally, Wm J

5227:TR:86 $18.00 Parallel Execution Model for Logic Programming, PhD Thesis
Li, Pey-yun Peggy

5223:TR:86 $15.00 Integrated Optical Motion Detection, PhD Thesis
Tanner, John E

5221:TR:86 $3.00 Sync Model: A Parallel Execution Method for Logic Programming
Li, Pey-yun Peggy and Alain J Martin. (current supply only: see Proc SLP'86 3rd IEEE Symp
on Logic Programming Sept '86)

5220:TR:86 $4.00 Submicron Systems Architecture
ARPA Semiannual Technical Report

5215:TR:86 $2.00 How to Get a Large Natural Language System into a Personal Computer
Thompson, Bozena H and Frederick B Thompson

5214:TR:86 $2.00 ASK is Transportable in Half a Dozen Ways
Thompson, Bozena H and Frederick B Thompson

5212:TR:86 $2.00 On Seitz' Arbiter
Martin, Alain J

5210:TR:86 $2.00 Compiling Communicating Processes into Delay-Insensitive VLSI Circuits
Martin, Alain. (current supply only: see Distributed Computing V 1 no 4 (1986))

5207:TR:86 $2.00 Complete and Infinite Traces: A Descriptive Model of Computing Agents
van Horn, Kevin

205:TR:85 $2.00 Two Theorems on Time Bounded Kolmogrov-Chaitin Complexity
Schweizer, David and Yaser Abu-Moetafa

5204:TR:85 $3.00 An Inverse Limit Construction of a Domain of Infinite Lists
Choo, Young-Il

I3

Caltech Computer Science Technical Reports

5202:TR:85 $15.00 Submicron Systems Architecture
ARPA Semiannual Technical Report

5200:TR:85 $18.00 ANIMAC: A Multiprocessor Architecture for Real-Time Computer Animation, PhD Thesis
Whelan, Dan

5198:TR:85 $8.00 Neural Networks, Pattern Recognition and Fingerprint Hallucination, PhD Thesis
Mjolsness, Eric

5197:TR:85 $7.00 Sequential Threshold Circuits, MS thesis
Platt, John I

5195:TR:85 $3.00 New Generalization of Dekker's Algorithm for Mutual Exclusion
Martin, Alain J. (current supply only: see Information Processing Letters 23 295-297 1986)

5194:TR:85 $5.00 Sneptree - A Versatile Interconnection Network
Li, Pey-yun Peggy and Alain J Martin

5193:TR:85 $2.00 Delay-insensitive Fair Arbiter
Martin, Alain J

5190:TR:85 $3.00 Concurrency Algebra and Petri Nets
Choo, Young-il

5189:TR:85 $10.00 Hierarchical Composition of VLSI Circuits, PhD Thesis
Whitney, Telle

5185:TR:85 $11.00 Combining Computation with Geometry, PhD Thesis
Lien, Sheue-Ling

5184:TR:85 $7.00 Placement of Communicating Processes on Multiprocessor Networks, MS Thesis
Steele, Craig

5179:TR:85 $3.00 Sampling Deformed, Intersecting Surfaces with Quadtrees, MS Thesis I
Von Herzen, Brian P

5178:TR:85 $9.00 Submicron Systems Architecture
ARPA Semiannual Technical Report _

5174:TR:85 $7.00 Balanced Cube: A Concurrent Data Structure
Dally, William J and Charles L Seitz

5172:TR:85 $6.00 Combined Logical and Functional Programming Language
Newton, Michael

5168:TR:84 $3.00 Object Oriented Architecture
Dally, Bill and Jim Kajiya I

5165:TR:84 $4.00 Customizing One's Own Interface Using English as Primary Language
Thompson, B H and Frederick B Thompson

5164:TR:84 $13.00 ASK French - A French Natural Language Syntax, MS Thesis
Sanouillet, Remy

5160:TR:84 $7.00 Submicron Systems Architecture
ARPA Semiannual Technical Report

5158:TR:84 $6.00 VLSI Architecture for Sound Synthesis
Wawrzynek, John and Carver Mead

5157:TR:84 $15.00 Bit-Serial Reed-Solomon Decoders in VLSI, PhD Thesis
Whiting, Douglas I

5147:TR:84 $4.00 Networks of Machines for Distributed Recursive Computations
Martin, Alain and Jan van de Snepscheut

5143:TR:84 $5.00 General Interconnect Problem, MS Thesis
Ngai, John

5140:TR:84 $5.00 Hierarchy of Graph Isomorphism Testing, MS Thesis
Chen, Wen-Chi

5139:TR:84 $4.00 HEX: A Hierarchical Circuit Extractor, MS Thesis
Oyang, Yen-Jen

4

Caltech Computer Science Technical Reports

5137:TR:84 $7.00 Dialogue Designing Dialogue System, PhD Thesis
Ho, Tai-Ping

5136:TR:84 $5.00 Heterogeneous Data Base Access, PhD Thesis
Papachristidis, Alex

5135:TR:84 $7.00 Toward Concurrent Arithmetic, MS Thesis
Chiang, Chao-Lin

5134:TR:84 $2.00 Using Logic Programming for Compiling APL, MS Thesis
Derby, Howard

5133:TR:84 $13.00 Hierarchical Timing Simulation Model for Digital Integrated Circuits and Systems, PhD Thesis
Lin, Tzu-mu

5132:TR:84 $10.00 Switch Level Fault Simulation of MOS Digital Circuits, MS Thesis
Schuster, Mike

5129:TR:84 $5.00 Design of the MOSAIC Processor, MS Thesis
Lutz, Chris

5128:TM:84 $3.00 Linguistic Analysis of Natural Language Communication with Computers
Thompson, Bozena H

5125:TR:84 $6.00 Supermesh, MS Thesis
Su, Wen-King

5123:TR:84 $14.00 Mossim Simulation Engine Architecture and DesignI Dally, Bill

5122:TR:84 $8.00 Submicron Systems Architecture
ARPA Semiannual Technical Report

5114:TM:84 $3.00 ASK As Window to the World
Thompson, Bozena, and Fred Thompson

5112:TR:83 $22.00 Parallel Machines for Computer Graphics, PhD Thesis
Ulner, Michael

5106:TM:83 $1.00 Ray Tracing Parametric Patches
Kajiya, James T

5104:TR:83 $9.00 Graph Model and the Embedding of MOS Circuits, MS Thesis
Ng, Tak-Kwong

5094:TR:83 $2.00 Stochastic Estimation of Channel Routing Track Demand

Ngai, John

5092:TM:83 $2.00 Residue Arithmetic and VLSI
Chiang, Chao-Lin and Lennart Johnsson

S5091:TR:83 $2.00 Race Detection in MOS Circuits by Ternary Simulation
Bryant, Randal E

5090:TR:83 $9.00 Space-Time Algorithms: Semantics and Methodology, PhD Thesis
Chen, Marina Chien-mei

5089:TR:83 $10.00 Signal Delay in General RC Networks with Application to Timing Simulation of Digital Integrated
Circuits
Lin, Tzu-Mu and Carver A Mead

5086:TR:83 $4.00 VLSI Combinator Reduction Engine, MS Thesis
Athas, William C Jr

5082:TR:83 $10.00 Hardware Support for Advanced Data Management Systems, PhD Thesis

Neches, Philip

5081:TR:83 $4.00 RTsim - A Register Transfer Simulator, MS Thesis

Lam, Jimmy

5074:TR:83 $10.00 Robust Sen~tence Analysis and Habitability
Trawick, David

* 5

Caltech Computer Science Technical Reports I
5073:TR:83 $12.00 Automated Performance Optimization of Custom Integrated Circuits, PhD Thesis

Trimberger, Steve

5065:TR:82 $3.00 Switch Level Model and Simulator for MOS Digital Systems
Bryant, Randal E

5054:TM:82 $3.00 Introducing ASK, A Simple Knowledgeable System Conf on App'l Natural Language Processing
Thompson, Bozena H and Frederick B Thompson

5051:TM:82 $2.00 Knowledgeable Contexts for User Interaction Proc Nat'l Computer Conference
Thompson, Bozena, Frederick B Thompson, and Tai-Ping Ho I

5035:TR:82 $9.00 Type Inference in a Declarationless, Object-Oriented Language, MS Thesis
Holstege, Eric

5034:TR:82 $12.00 Hybrid Processing, PhD Thesis
Carroll, Chris

5033:TR:82 $4.00 MOSSIM II: A Switch-Level Simulator for MOS LSI User's Manual
Schuster, Mike, Randal Bryant and Doug Whiting I

5029:TM:82 $4.00 POOH User's Manual
Whitney, Telle

5018:TM:82 $2.00 Filtering High Quality Text for Display on Raster Scan Devices
Kajiya, Jim and Mike Ullner

5017:TM:82 $2.00 Ray Tracing Parametric Patches
Kajiya, Jim

5015:TR:82 $15.00 VLSI Computational Structures Applied to Fingerprint Image Analysis
Megdal, Barry 3

5014:TR:82 $15.00 Extension of Object-Oriented Languages to a Homogeneous, Concurrent Architecture, PhD Thesis
Lang, Charles R Jr

5012:TM:82 $2.00 Switch-Level Modeling of MOS Digital Circuits
Bryant, Randal

5000:TR:82 $6.00 Self-Timed Chip Set for Multiprocessor Communication, MS Thesis
Whiting, Douglas

4684:TR:82 $3.00 Characterization of Deadlock Free Resource Contentions
Chen, Marina, Martin Rem, and Ronald Graham

4655:TR:81 $20.00 Proc Second Caltech Conf on VLSI
Seitz, Charles, ed. I

4090-TR-80 $3.00 VLSI Based Real-Time Hidden Surface Elimination Display System, MS Thesis
Demetrescu, Stefan G

3760:TR:80 $10.00 Tree Machine: A Highly Concurrent Computing Environment, PhD Thesis
Browning, Sally

3759:TR:80 $10.00 Homogeneous Machine, PhD Thesis
Locanthi, Bart I

3710:TR:80 $10.00 Understanding Hierarchical Design, PhD Thesis
Rowson, James

3340:TR:79 $26.00 Proc. Caltech Conference on VLSI (1979)
Seitz, Charles, ed

2276:TM:78 $12.00 Ianguage Processor and a Sample Language
qyres, Ron

6

Caltech Computer Science Technical Reports

Please PRINT your name, address and amount enclosed below:

Iname
Address

U City State Zip Country

jAmount enclosed $

____Please check here if you wish to be included on our mailing list

____Please check here for any change of address

____Please check here if you would prefer to have future publications lists sent to your e-mail address.

I Email address

UReturn this form to: Computer Science Library, 256-80, Caltech, Pasadena CA 91125

ICS-TR-90-03 .. CS-TR-88-12 -.5238:TR:87 -5195:TR:85 .. 5134:TR:84 -5051:TM:82

CS-TR-90-02 -CS-TR-88-1 1 5236:TR:86 .5194:TR:85 -5133:TR:84 -5035:TR:82

CS-TR-90-01 -CS-TR-88-1O -5235:TR:86 -5193:TR:85 -5132:TR:84 -5034:TR:82I CS-TR-8%-12 -..0-TR.-88-07 .. 5234:TR:86 -5190:TR:85 .. 5129:TR:84 .. 5033:TR:82

CS-TR-89- 11 CS-TR-88-06 5233:TR:86 -..5189:TR:85 -5128:TM:84 5029:TM:82I CS-TR-89- 10 -CS-TR-88-05 -5232:TR:86 -5185:TR:85 .5 125:TR:84 -.5018:TM:82

~CS-TR-89-09 -CS-TR-88-04 -5230:TR:86 .. 5184:TR:85 -5123:TR:84 -5017:TM:82

.CS-TR-89-07 _...CS-TR-88-03 -5229:TR:86 -5179:TR:85 .. 5122:.TR:84 -- 5015:TR:82ICS-TR-89-06 -CS-TR-88-02 -~5228:TR:86 -5178:TR:85 .5114:TM:84 -5014:TR:82

.. CS-TR-89-05 -CS-TR-88-01 -5227:TR:86 -5174:TR:85 -51 12:TR:83 .. 5012:TM:82

-CS-TR-89-04 -52518:TR:88 -5223:TR:816 _5172:TR:85 -5106):TM:83 -5000:TR:82U CS-TR-89-03 -5256:TR:87 .. 522 1:TR:86 -5168:TR:84 .5104:TR:83 4684:TR:82

-CS-TR-89-02 .. 5253:TR:88 -5220:TR:86 -5165:TR:84 .. 5094:TR:83 4655:TR:81ICS-TR-89-01 -5251:TR:87 -5215:TR:86 -5164:TR:84 -5092:TM:83 -4090-TR-80

-CS-TR-88-22 -5250:TR:87 .. 5214:TR:86 -5160:TR:84 .. 5091:TR:83 ... 3760:TR:80

-CS-TR-88-21 -5249:TR:87 -5212:TR:86 -5158:TR:84 .5090:TR:83 -3759:TR:80I -CS-TR-88-20 -.5247:TR:87 210:TR:88 -..5157:TR:84 -5089:TR:83 -3710:TR:80

-CS-TR-88-19 -5246:TR:87 -5207:TR:86 -5147:TR:84 .. 5086:TR:83 .. 3340:TR:79I CS-TR-88-18 -5244:TR:87 52-T:55143:TR:84 5,082:TR:-83 -2276:TM:78

-CS-TR-88-17 -5243:TR:87 -5204:TR:85 -5140:TR:84 -5081:TR:83 -

-CS-TR-88- 16 -5242:TR:87 .5202:TR:85 -5139:TR:84 5074:TR:83 -ICS-TR-88- 15 -...5241:TR:87 5200:TR:85 -5137:TR:84 -5073:TR:83 -

... CS-TR-88-14 -5240:TR:87 5198:TR:85 -5136:TR:84 -5065:TR:82

......CS-TR-88-13 5,239:TR:87 -5197:TR:85 5135:.TR:84 -50514:TM:82 -

7

Ia

SUBMICRON SYSTEMS ARCHITECTURE PROJECT
Department of Computer Science
California Institute of Technology

Pasadena, CA 91125

Semiannual Technical Report

I
Caltech Computer Science Technical Report

Caltech-CS-TR-89-12

31 October 1989

I
The research described in this report was sponsored by the Defense Advanced Research
Projects Agency, DARPA Order number 6202; and monitored by the Office of Naval
Research under contract number N00014-87-K-0745.U

U

SUBMICRON SYSTEMS ARCHITECTURE

Semiannual Technical Report

Department of Computer Science

California Institute of Technology

Caltech-CS-TR-89-12

31 October 1989

Reporting Period: 1 April 1989 - 31 October 1989

Principal Investigator: Charles L. S-eitz

Faculty Investigators: K. Mani Chandy

Alain J. Martin

Charles L. Seitz

Stephen Taylor

U
I

* Sponsored by the
Defense Advanced Research Projects Agency

DARPA Order Number 6202

Monitored by the
Office of Naval Research

Contract Number N00014-87-K-0745

_I

_I

SUBMICRON SYSTEMS ARCHITECTURE

Department of Computer Science
California Institute of Technology

1. Overview and Summary

1.1 Scope of this Report

This document is a summary of research activities and results for the seven-month
period, 1 April 1989 to 31 October 1989, under the Defense Advanced Research
Project Agency (DARPA) Submicron Systems Architecture Project. Previous
semiannual technical reports and other technical reports covering parts of the
project in detail are listed following these summaries, and can be ordered from
the Caltech Computer Science Library.

1.2 Objectives

The central theme of this research is the architecture and design of VLSI
systems appropriate to a microcircuit technology scaled to submicron feature sizes.
Our work is focused on VLSI architecture experiments that involve the design,
construction, programming, and use of experimental message-passing concurrent3 computers, and includes related efforts in concurrent computation and VLSI design.

1.3 Highlights3 * Memoryless Mosaic functional on first silicon (sections 2.1 and 4.9).

* 192-node Symult Series 2010 mullicomputer (section 2.2)

* Program Composition (section 3.1)

* Cantor for the Mosaic (section 3.2)

U Testing the asynchronous microprocessor (section 4.1).

* The limits of delay-insensitivity (section 4.2).

* Self-timed mesh-routing chips operate at 65MB/s (section 4.7).

I

I
2. Architecture Experiments

2.1 Mosaic Project

Chuck Seitz, Nanette J. Boden, Jakov Seizovic, Don Speck, Wen-King Su, Steve
Taylor, Tony Wittry

The Mosaic C is an experimental fine-grain multicomputer, currently in develop-
ment. Each Mosaic node is a single VLSI chip containing a 16-bit processor, a
three-dimensional mesh router, a packet interface, 16KB of RAM, and a ROM that
holds self-test and bootstrap code. These nodes are arrayed logically and phys-
ically in a three-dimensional mesh. We are working toward building a 16K-node
(32 x 32 x 16) Mosaic prototype, together with the system software and programming
tools required to develop application programs.

The Mosaic can be programmed using the same reactive-process model that
is used for the medium-grain multicomputers that our group has developed.
However, the small memory in each node dictates that programs be formulated
with concurrent processes that are quite small. The Cantor programming system m
supports this style of reactive-process programming by a combination of language,
compiler, and runtime support. The programmer is responsible only for expressing
the computing problem as a concurrent program. The resources of the target I
concurrent machine are managed entirely by the programming system.

The Mosaic project includes many subtasks, which are listed below together
with their current status:

Design, layout, and verification of the single-chip Mosaic node. The
Mosaic C chip with 16KB of memory is 9.0mmx7.4mm in a 1.2jAm CMOS process, I
and has 84 pads. Yield characterization indicates that a node with 16KB rather
than 8KB of primary memory will increase the chip fabrication cost by less than
30%. Doubling the primary memory at 1.3x the cost for the prototype is a good
tradeoff. Additional memory will be particularly helpful for a system that will
be used extensively for software development. A substantial economy has been
achieved by using TAB rather than conventional packages, so the total fabrication
budget has not changed from original estimates.

A "memoryless Mosaic" test chip contairing the processor, packet interface,
router, clock driver, and central timing and memory arbitration was sent to MOSIS
on August 10th to be fabricated in the 1.6A•m SCMOS process. (The memory section
had been verified earlier.) These chips were returned from fabrication on October
12th, and have been subjected to preliminary tests. Although there are additional
tests to perform, this chip appears to operate completely correctly on first silicon,
with a yield of 47/50 in the preliminary screening. All processor instructions and the
router have been tested; the packet interface is now being tested. The test fixture
currently limits speed testing to a clock period of 37ns (27MHz). The chip operates I
coizectly with a clock period of 37ns, except for one case. When an incoming packet

-2- I

I

directs the router to switch the packet onto the next dimension, the minimum clock
period for correct operation is approximately 65ns. Depending on the nature of the
design error, this problem may require a design iteration on the memoryless Mosaic.
(See section 4.9 for additional details.)

Internal self-test and bootstrap code. Since the Mosaic C is a
programmable computing element, devoting a portion of the bootstrap ROM to
self-testing greatly simplifies the logistics of producing these chips in quantity.
The bootstrap and self-test code will be tested with EPROM connected to the
memoryless Mosaic elements. Additional tests to the channels, which must be
accomplished by the fabricator's automatic test equipment, are being written.

Packaging. The packaging design is based on Tape Automated Bonding (TAB)
of the chips on small circuit boards. The manufacturing and replacement unit will
contain eight nodes in a logical 2x2x2 submesh. These modules have stacking
connectors that provide 160 pins on both the top and bottom, and are confined by
pressure between motherboards to provide a three-dimensional connection structure
that can be disassembled and reassembled for repair. We are currently evaluating
suitable connectors.

Cantor runtime system. A Cantor runtime system has been written in
Mosaic assembly code, and is now interfaced to the code produced by version 3.0
of the Cantor programming system. Research is underway on runtime algorithms
that allow the system to operate robustly in spite of fluctuations in local storage
demands. For example, if a local receive queue threatens to overflow, a part of the
receive queue is distributed to another node. (See also section 3.2.)

Cantor language, compiler, and application studies. We are now
experimenting with version 3.0 of the Cantor language and compiler, which was
developed by William C. Athas at the University of Texas at Austin.

Host interfaces and displays. The three-dimensional mesh structure of the
Mosaic allows a very large bandwidth around the mesh edges. In order to initiate
and interact with computations within the Mosaic, we are designing interfaces
between the Mosaic message network and host computers, and between the message
network and displays.

A system that will serve both as a prototype of a host interface and as a software
development platform is based on eight memoryless Mosaic elements connected to
fast, two-ported, external memories. This workstation add-in board will provide
an interface that will allow the workstation to monitor the memories of the Mosaic
elements during program execution.

In order to provide a high-performance display capability for the Mosaic, we
have designed a system that uses one 32x32 plane of a Mosaic as a rendering engine
and frame buffer. A detailed design of the video output generator that attaches to
one edge of this 32 x 32 plane has been completed; construction awaits finalization
of packaging decisions.

-3-

U
2.2 Second- Generation Medium-Grain Multicomputers*

Chuck Seitz, Joe Beckenbach, Christopher Lee, Jakov Scizovic, Craig Steele, Wen-
King Su

Symult Systems has delivered additional contributed equipment over the past seven
months, with the result that we are now operating a 192-node Symult Series
2010 multicomputer for applications and a 32-node Symult Series 2010 for system $
development. Utilization of the 192-node system through the Caltech Concurrent
Supercomputer Facilities has been at a level of approximately 88% of the available
node-hours. These systems run very dependably, and have yet to exhibit a hardware
failure.

Copies of the Cosmic Environment system have been distributed on request to
20 additional sites during this period, bringing the total copies distributed directly
from the project to nearly 200.

We are implementing a new version of the Cosmic Environment host runtime
system, and adding numerous new features to the Reactive Kernel node operating
system. The new CE is based internally on reactive-process programming, and will
allow a more distributed management of a set of network-connected multicomputers.
The extended RK will support global operations across sets of cohort processes,
including barrier synchronization, sum, min, max, parallel prefix, and rank. i
Another extension will be the support of distributed data structures, such as sets
and ordered sets. These new features will be implemented at the RK handler level,
where the message latency is only a fraction of that at the protected user level. I
The implementation of these algorithms at the handler level permits global and
distributed-data-structure operations in times that do not greatly exceed those of
user-level operations dealing with single messages.

Our Caltech project continues to work closely with DARPA-supported Touch-
stone project at Intel Scientific Computers. Our contributions include the architec- itural design, message-routing methods and chips, and system software. (See section

3.3 for a summary of the port of RK to the iPSC/2, and section 4.7 for a summary
of test results on mesh-routing chips.)

The Cosmic Cubes that were built in our project in 1983 continue to operate
reliably. No hard failures were recorded in this seven-month period. The two
original Cosmic Cubes have now logged 4.2 million node-hours with only four hard
failures; three of these were chip failures in nodes, and one a power-supply failure.
A node MTBF in excess of 1,000,000 hours is probable based on this rcliability I
experience.

* This segment of our research is sponsored jointly by DARPA and by grants from

Intel Scientific Computers (Beaverton, Oregon) and Symult Systems (Monrovia, $
California).

-4-

I

3. C,.current Computation

3.1 Program Composition

K. Mani Chandy, Steve Taylor

This research investigates the use of program composition as a method of
developing concurrent programs. The goal is to develop a theory, a notation,
and an implementation of program composition operators so that programs can

be developed by putting smaller programs together to get larger ones. The

compositional approach to programming was described in the previous semiannual

technical report. New components of this work are:

1. A primitive set of composition operators (and not merely sequential or
functional composition) has been implemented, and a proof theory has been

developed for this set of operators.

2. The researchers believe that in each application area there are a few problem-
solving paradigms or "templates," and that, formally, these templates are
user-defined composition operators. Thus, the notation allows user-defined
composition operators.

3. The notation is intended to execute on both shared-memory and message-I passing concurrent computers, without modification. A fragment of the notation
has been implemented on the Connection Machine by Professor Rajive Bagrodia

* at UCLA.

4. The theory incorporates functional programming ideas, and extends it to
problems that are not functional. (Most reactive systems are nondeterministic,

and nonfunctional.)

5. The researchers have been working with computational fluid dynamicists and

biologists to identify problem-solving paradigms in these disciplines, and to
evaluate whether the compositional approach is effective in these areas.

The theory of program composition has been developed, and a prototype
implementation in Strand has been completed. Discussions with Caltech faculty
in Applied Math and Biology have provided initial test cases. Discussions with

researchers at Aerospace Corporation have allowed an evaluation of program
composition for tracking and trajectory-computation applications, and have led to
initial joint research in these applications.

I 3.2 Cantor for the Mosaic

Nanette J. Boden, Chuck Scitz
With the Cantor version 3.0 compiler and interpreter in place, we are beginning to
translate a representative subset of our library of Cantor application programs into

the new version. The purpose of this exercise is twofold: We maintain a library of
programs for demonstrations, and we continue the process of evaluating the impact

* -5-I

U
of new language features on application programming. The aspects of the Cantor
3.0 that have the most impact on programming are the incorporation of functions
and the introduction of message discretion.

As usual in the development of programming systems, the introduction of

new capabilities at one level of the system imposes new requirements at other
levels. In the case of the new features of Cantor 3.0, the introduction of message
discretion raises the specter of violating the guarantee of message consumption. If
a process is waiting for the arrival of a particular message, messages received in the

interim must be buffered. Since the resources of a node are quite limited, physical I
space may not be available for the awaited message to be received. Since infinite
queueing is theoretically required, we are investigating engineering solutions that
use the resources of the entire machine, and potentially of secondary memory, to
approximate infinite queues.

In addition to implementing runtime support for new language features, we
are investigating solutions to other problems that became apparent during the
development of the Mosaic runtime system. In this first version, we made simplifying

assumptions to minimize both the size and complexity of the runtime support. Two I
of the assumptions that must be seriously addressed in future versions of the runtime
system are: (1) if an available reference value exists for the creation of a new process
on a remote node, then enough resources exist on that node for the new process; and
(2) the code for each process resides on every node. These assumptions are clearly
unrealistic for the types of memory-intensive computations that we seek to perform.
Currently, we are devising and evaluating schemes for process placement that do not
assume available resources on the remote node. We are also devising schemes for
code partitioning that will maximize the amount of memory available for processes, I
while not introducing excessive overhead for acquiring necessary copies of process
code.

3.3 The Cosmic Environment and Reactive Kernel

Chuck Seitz, Joe Beckenbach, Christopher Lee, Jakou Seizovic, Wen-King Su I
A joint effort with Intel to port the Reactive Kernel to run as the native node
operating system on the iPSC/2 has successfully achieved its first milestone.
Our longer-term goal is to run an enhanced version of RK on a future Intel
multicomputer that is based on the Intel i860 processor.

The port of the Inner Kernel of RK and of the system-handler layer was
performed in an intensive effort over a two-week period by Jakov Seizovic, RK's
original author, and was upgraded to include a preliminary user-process handler by
Bill Bain of Intel during the following two weeks. The fine-tuning of the message
performance took another week. This port has shown once again that the modular

structure of RK provides for simple porting and simplifies debugging, especially I
in the early phases of the port. This preliminary version of RK outperformed

-6-
S|I

I
the Intel NX operating system by about a factor of two in message latency,
and achieved equivalent message bandwidth. We have subsequently increased the
message bandwidth while providing proper fragmentation and reassembly of long
messages, which increases the fairness of access to the message network. The
completion of this port is expected to be performed principally by Intel within

* the next two months.

RK has gotten somewhat ahead of the Cosmic Environment system in its use of
a layered reactive-process structure. A new version of CE has been designed, and
is currently being written.

3.4 Hybrid Distributed Discrete-Event Simulators

j Wen-King Su, Chuck Seitz

Two hybrid distributed simulators have been written, and their performance results
are included in the PhD thesis: "Reactive-Process Programming and Distributed
Discrete-Event Simulation," [Caltech-CS-TR-89-111.

In a distributed discrete-event simulation, the simulation subject is divided into
a number of smaller elements. The elements are distributed over a multicomputer
or a multiprocessor, and are simulated concurrently. In a conservative simulator,
null messages are necessary for the progress of a circuit of idling elements. In
the framework of the Chandy-Misra-Bryant algorithm, elements are simulated
independently, as if each element is located on a separate node. While this
framework will achieve good performance on a fine-grain multicomputer, the volume
of null messages is an unnecessary burden for a medium-grain multicomputer, in

which many elements share the same node. When nodes are few, the CMB simulator

does worse than a sequential simulator.

The goal of the hybrid simulators is to eliminate intra-node null messages by
combining elements on the same node into a single macro-element. In the hybrid-
1 simulator, macro-elements are simulated internally by a conventional sequential
simulator. Hybrid-1 reduces intra-node messages by eliminating all intra-node null
messages. It also reduces inter-node messages by synchronizing all element outputs
in a macro-element. The result is a simulator that equals a sequential simulator on
a single node and shows a speedup when more nodes are used, regardless of element
placement. However, the amount of speedup is limited because some concurrency
is lost to the strict synchronization. In hybrid-2, macro-elements are simulated by
a combination of CMB and sequential simulators. Elements are constantly moved
between the two modes as they become blocked or unblocked. Since an element can
progress as far as its inputs allow, the hybrid-2 can attain the full CMB speedup
when many nodes are used. However, since element outputs are not synchronized
in each macro-element, hybrid-2 is sensitive to element placement.

-7-

U

I
3.5 CONCISE*

Sven Mattisson, Lena Peterson, Chuck Seitz

The concurrent circuit-simulation program, CONCISE, originally used waveform.
relaxation in conjunction with Jacobi iterations. This method gives high
concurrency, but other iterative methods have better convergence performance.
These other methods do not, however, offer the same concurrency as the Jacobi I
method. Thus, we have concentrated recently on developing combinational methods
that retain the concurrency properties of the Jacobi iterations while improving
convergence. CONCISE has been enhanced to exploit circuit-node coupling. The I
strongly coupled nodes are solved in a block with a direct method; thus, convergence
is improved.

The waveform relaxation method has also been augmented with multicolored
Gauss-Seidel iterations. Normally, Gauss-Seidel iterations rely on the equations
being solved in sequence. However, by coloring the circuit graph it is possible to
find an ordering that gives high concurrency. All equations with one color can be
solved in parallel, and typically only three to five colors are needed for a circuit to
yield high concurrency.

A special version of CONCISE was written to evaluate Jacobian matrix
coefficients concurrently, while using a single-rate integration method for eachi
subsystem. This version is now about to be incorporated in the standard version.

A plotting program, communicating with CONCISE via messages, has been
developed. This program displays selected waveforms as they are computed.

CONCISE was given a thorough workout over the summer performing
simulations on a 64-node Symult 2010 of 4000-transistor sections of the FMRC2.1
self-timed mesh-routing chips. These studies were part of characterizing the process-
dependence of the FRMC2.1 design.

CONCISE is written in C using the CE/RK functions, and now runs on Sun,
Sequent, Macintosh II (A/UX), Intel iPSC/1, Intel iPSC/2, and Symult Series 2010
computers. I
3.6 A C-Based Concurrent Programming Language For Multicomputers

Marcel van der Goot, Alain Martin

We are defining and implementing a concurrent programming language for message-
passing multicomputers. Since the main difference between multicomputers and
sequential machines is the possibility of concurrency, we have concentrated in
our language design on adding concurrency without redefining the complete
computation model. In particular, since most of our programming experience is

* This segment of our research is a joint project with the Applied Electronics

Department of the University of Lund, Sweden.

I

with using imperative sequential languages, we have chosen one such language, C,
as the basis for our work. C matches well with our desire to design a language that
is compact but nevertheless useful for writing "real" application programs.

In our model, a computation consists of a set of independently executing
sequential processes, plus a set of message-buffers (channels) connecting pairs of
processes. Processes and channels together form the so-called computation graph,
which can vary dynamically during the computation. A process is a short sequential
(C) program that can exchange data with its environment by sending or receiving
messages. A process typically has about the same size as a function; such a fine
grain size makes the language applicable to a large range of multicomputers.

We finished a preliminary implementation of a somewhat restricted version of
the language earlier this summer. In that implementation, a concurrent program
is compiled into a single UNIX process that is executed on a Sun workstation.
Currently we are working on a compiler for the complete language, which we hope

to have running in December or January.

I

I
I
_I

iI

I
I
I
1 9

I
4. VLSI Design

4.1 Testing of the Asynchronoius Microprocessor 3
Steve Burns, Tony Lee, Drafen Borkovii, Pieter Hazewindus, Alain Martin

The Asynchronous Microprocessor, described in the previous semiannual technical
report, has since been thoroughly tested. Chips fabricated at a 24m feature size
functioned as intended over a wide range of power supply voltages, temperatures,
and delays of the external memories. The chips fabricated at 1.6Mm, whilen
functioning correctly at certain voltages, temperatures, and delays, failed for many

values of these external parameters. After a detailed analysis, we concluded that

all the high-level transformations were performed correctly. The problem, instead, I
occurred in the final phase of the compilation, the transformation from production
rules into networks of CMOS gates. In particular, the values of some isochronic

forks change too slowly, allowing different gates to interpret the digital value
inconsistently. These forks were located and the circuits were modified to correct

the problem. A corrected 1.61zm version of the microprocessor is expected back
from MOSIS fabrication on December 1st.

4.2 The Limitations to Delay-Insensitivity in Asynchronous Circuits I
A lain Martin

Once it was established that the problem in the 1.61m version of the microprocessor
was caused by a malfunctioning of an isochronic fork for certain values of the

external parameters, the question of whether isochronic forks are necessary needed n
to be answered.

An isochronic fork is used to distribute a variable to several points of the circuit
as input of several gates. In the discrete model, it is assumed that the different

copies of the variable have the same values at all times. For this assumption to
be valid, the following timing requirement has to be fulfilled. A change on the
input of a fork causes the different outputs to change asynchronously. However, the

"transition delays" on the different outputs of an isochronic fork must be similar
enough in length that once a change on one of the outputs of the fork has caused 3
another gate to fire, one may conclude that the changes on all the outputs have

completed.

Since the definition of isochronic forks violates the delay-insensitivity assump-

tion, and since all efforts to design entirely delay-insensitive circuits have been
fruitless, we started to suspect that the class of circuits that are entirely delay- n
insensitive could be very limited. Indeed, we have been able to prove that an
entirely delay-insensitive circuit can contain only C-elements, hence settling an im-

portant open question in the theory of asynchronous circuit design, and vindicating $
the compromise to delay-insensitivity implied by the use of isochronic forks.

-10- I

4.3 Tools for Performance Evaluation of Self-timed Circuits

Steve Burns, Alain Martin

The compilation method has, in the past, been mostly concerned with correctness,
not efficiency. With the design of the microprocessor, high performance has become
a major concern. Two separate analysis tools have been developed in order to

determine the speed at which self-timed circuits operate.

The first tool is a simple event-driven simulator that takes, as input, extracted
circuit layout. Timing analysis is based on the r-model. Good agreement has been
found between the timing information produced by the simulator and actual results
obtained from the fabricated chips. The simulator itself is quite efficient, even for
large circuits; simulation of a single instruction of the microprocessor takes less than
a second.

The second tool allows the comparison of various methods of handshaking
without actually constructing and then simulating the circuit. The fundamental
sequencing between actions can be determined, in many important cases, by a
static analysis of a high-level description of the program. The necessary analysis
involves solution of a finite linear optimization problem. For small problems, it can
be solved by the enumeration of all the cycles in a so-called "constraint" graph. A
PROLOG program has been constructed that performs this analysis.

4.4 Cache Memory for an Asynchronous Microprocessor

Josi A. Tierno, Alain Martin

The design of a direct-mapped instruction cache for an asynchronous microprocessor
is underway. The cache is completely self-timed, both the control part and the RAM
array. The objective is to make the design suitable for on-chip implementation as
part of the processor pipeline.

4.5 Self-Timed Circuits in GaAs

Jose A. Tierno, Alain Martin

Experimentation is being done on new transistor configurations for digital circuits

implemented in Enhancement/Depletion mode MESFET GaAs technology. The
main characteristics of these configurations are increased noise margins, reduced
input load, and slightly faster gate delays than conventional DCFL (direct-

coupled FET logic) and SBFL (super buffered fet logic) technology. Extensive
experimentation has been done using SPICE for simulations, and two chips have
been sent for fabrication to test some basic circuits.

I -11-

I
4.6 Testing Self-Timed Circuits

Pieter Hazewindus, Alain Martin

We are continuing our investigation into the testability of self-timed circuits.
Previously we tried to construct a set of circuit elements with which any program
could be implemented and for which all faults would be testable. This goal seems
unattainable: We have found that - with one exception - for any isochronic fork I
there is a corresponding fault that is not testable. As we have shown that most
circuits require isochronic forks, the range of circuits without untestable faults is
very limited. Hence, without additional circuitry or additional scan points, most
circuits will have untestable faults.

To increase the fault coverage it is possible to add a test structure, thus I
connecting all state-holding elements in a queue and thereby reducing the problem
of testing a sequential circuit to that of testing a combinational one. Test vectors
are put into the queue, while the results are taken out, similar to scan-type designs I
for synchronous circuits. We speculate that with appropriate conditions on the
combinational logic, all faults are testable this way; however, for our current design
style, such a queue would be expensive in area, as the number of state-holding
elements is much larger than the number of latches in a typical synchronous design.
We are investigating ways to reduce the number of state-holding elements in then
queue while maintaining the complete testability.

4.7 Fast Self-Timed Mesh Routing Chips fi
Chuck Seitz

The FMRC2.1 mesh-routing chips have now been thoroughly characterized by Intel,
and have been shown to operate at a channel rate of 65MB/s. However, testing
at Intel also discovered a failure mode that occurs when several channels operate 3
concurrently. This failure was traced to collapse of the internal power supply under
these demanding conditions; thus, it is properly a failure of the packaging rather
than of the chip design.

This 132-pin chip devotes the 20 lowest-inductance PGA-package pins to Vdd
and GND, but either a better package or twice as many Vdd and GND pins are

required. Experiments with a number of alternative packages are now underway,
and have involved producing a complete set of test vectors for automatically testing
MRC chips.

The design and layout of two other versions of the FMRC is now underway. One
of these versions is designed to minimize latency by using relatively few internal
FIFO stages. Multicomputer applications benefit from the internal FIFOs, which
reduce blocking contention, but the tradeoff between throughput and latency is
different for multiprocessor applications. I

Samples of tested FMRC2.1 chips have been provided in recent months to CMU,

-12- 3
I

MCC, and MIT, in addition to those samples provided earlier to Intel Scientific
Computers and Symult Systems.

4.8 Implementing Adaptive Routing in Multicomputer Networks

Mike Pertel, Chuck Seitz
We are investigating those performance enhancements in multicomputer routing
that are achievable through practical adaptive routing strategies. Earlier work
has demonstrated the potential of multipath routing; our current objective is the
realization of that potential. The initial phase of this work is the comparison of
various specific routing algorithms on the basis of low-latency throughput, fault
tolerance, and traffic diffusion. The algorithm found to exhibit the best performance
under detailed network simulation will be implemented as a VLSI circuit to replace
the current Mosaic router.

4.9 Mosaic C Chips

Jakov Seizovic, Chuck Seitz, Don Speck, Wen-King Su, Tony Wittry

The full Mosaic element, a 9.Ommx7.4mm chip in 1.21Lm SCMOS technology,
introduced us to a number of difficulties in the design of chips that exhibit both
high complexity (:700K transistors) and fairly high clock rate (40MHz). The clock
lines cannot be run in minimum-width metal without compromising performance.
In this design, the memory contributes the largest part of the clock load, and the
combination of capacitive load and line resistance require that the clock lines be
run across the backbone of the chip in z0ltm-wide metal. The critical clock line
happened to be 02', which is distributed from the clock driver to the memory section
in the following pattern:I PHI2-

Processor+router I I ROMI. .. I I. . .
------------ / wide \-.......

COL(0) ---------- COL(1) ---------- COL(2) ---------- COL(3)I III III II I
bank (0) bank (4)IIIIII

III IIII I I high
bank(2) bank(6) high

bank(3) bank(7)
< --- -- -- -- > < >. < ------------- >

3500 lambda 3500 lambda 3500 lambda

* -13-

I
Analytical and simulation results for this situation were nearly identical. For
simulation simplicity, the set of three, parallel, minimum-width wires in each vertical
bundle was treated as one wide wire. Only the left half of the distribution network
was simulated with SPICE. The result of these simulations confirmed the followingn
area-energy-period optimums: (1) a clock driver of 700sq n-channel + 1050sq p-
channel per half of the RAM per phase, and (2) 15A-wide distribution wires across
the top for each phase.

The memory and router sections of the Mosaic were fabricated and tested more
than a year ago. To test the remaining parts of the full Mosaic element and
their ability to work together, the processor, packet interface, router, and clock
driver were integrated onto a "memoryless Mosaic" test chip that was sent to
MOSIS on August 10th. This test chip was a major milestone for us. A number I
of improvements in the processor instruction set and an increase in the channel
bandwidth created some design imbalances that required a substantial amount of
rethinking of the memory arbitration and packet interface.

The maximum combined data bandwidth of the receive and send parts of the
packet interface (PI) is equal to 50% of the total memory bandwidth, which is one I16-bit read or write each clock period (25ns). The original design specifications for

the PI included the assumption that there would be enough spare memory cycles
so that the PI would not need to request access to the data bus; it would instead I
use otherwise unused cycles for message transfer from/into the network.

The increased efficiency of the processor microcode invalidated this assumption,
and the design of the memory-bus arbitration unit and the PI had to be modified
to comply with the new specifications. Eight-word buffers were added between the
memory and the sending part of the packet interface, and between the receiving
part of the packet interface and the memory. The signals generated by the sender
and the receiver part of PI to request access to the memory bus include "hysteresis":
Depending on the amount of space available in the buffers, the PI may either steal I
unused cycles or request exclusive use of the memory. This scheme allows the data
transfer between memory and buffers to occur in bursts, rather than imposing the
bus arbitration overhead on every PI memory access.

The new design provides for the data transfer from/into the network at the
full network bandwidth regardless of the instruction sequence being executed. This Ifeature was achieved with a fairly modest increase in complexity: an increase in

buffering space from two to sixteen words, and an additional state machine to
handle the bus-request logic.

We are currently in the process of testing the memoryless Mosaic chips that
were returned from MOSIS fabrication on October 12th. So far, the chips appear to
function correctly. All processor instructions and router functions operate correctly,
but there is evidently a slow path in the router. We are investigating this problem.

-14-

I

j The Limitations to Delay-Insensitivity
in

Asynchronous Circuits
Alain J. Martin

Department of Computer Science
California Institute of Technology

Pasadena CA 91125, USA

Asynchronous techniques-i.e. techniques that do not use clocks to implement
sequencing-are current.y attracting considerable interest for digital VLSI circuit
design, in particular when the circuits produced are delay-insensitive. A digital
circuit is delay-insensitive (d.i.) when its correct operation is independent of the
delays in operators and in the wires connecting the operators, except that the delays

are finite and non-negative.
In this paper, we characterize the class of circuits that are entirely delay-

insensitive, and we show that this class is surprisingly limited: Practically all circuits
of interest fall outside the class since circuits inside the class may contain only C-
elements as multi-input operators.

1. Circuits as Networks of Gates

A d.i. circuit is a network of logical operators, or gates. A gate has one or more
Boolean inputs and one Boolean output. A gate represents a Boolean function: For
constant values of the inputs, the output takes a value that is defined by a Boolean
function of the inputs, and possibly the current value of the output. The state of

the circuit is entirely characterized by the set of input and output variables of the
gates.

We assume that all circuits are closed: Each variable is the input of a gate and
the output of a gate. (We shall see that we can igncre self-loops and postulate that
a variable is shared by exactly two different gates.) An open circuit is transformed
into a closed one by representing the environment of the circuit as gates.

Definitions and Notations. An execution of a simple assignment is called a
transition. The result of a transition of type x T is the postcondition x ; the result of
a transition of type x I is the postcondition -,x. The simple assignments x := true
and x := false are denoted by x T and x I,, respectively.

A gate with output variable z is defined by the two production rules (p.r.'s):

Bu' zT

Bd • I

where Bu is the condition on the input variables for a transition z T to take place,
and Bd is the condition on the input variables for a transition z I to take place-
B. and Bd are called the guards of the p.r.'s. The two production rules of a gate
have to fulfil the non-interference requirement.

I
Non-interference. -'B. V -'Bd is invariantly true.

The result of a production rule is the result of the transition caused by the
execution of a production rule.

All production rules with a true guard are executed concurrently. The execu-
tion of a production rule is considered correctly terminated when the result holds.
The execution of a p.r. correctly terminates except if the guard is falsified before
the result holds. In that case, the net-effect of the execution is undefined. We
therefore add a semantic requirement (to be proved invariantly true): stability of a
guard in a computation.

Stability. The guard of a production rule is stable in a computation when it is
falsified only in states where the result of the production rule holds.

We exclude self-invalidating production rules. A rule with guard g and result
r is self-invalidating if r =* -'g, like, for example, the rules x ,-* x I and -x .-* x TI

The execution of a p.r. in a state where the result holds is called vacuous, and is
called effective otherwise. From the definition of the execution of a p.r., the vacuous
execution of a p.r. is equivalent to a skip. Consequently, it is always possible to
modify the guard of a p.r. so that it does not contain the output variable of the
gate. (Left as an exercise for the reader.) Hence, we can eliminate self-loops, i.e.,
variables that are input and output of the same gate. In the sequel, unless specified
otherwise, an execution of a p.r. means an effective execution.

2. Wires, Forks, and Multiple-Output Gates

A priori, a wire with input x and output y is the gate defined by the p.r.'s x '-* y T
and -zx -*- y 4.. But the composition of any gate, including a wire, with a wire is
the gate itself with one of its variables renamed. Hence, we can add an arbitrary
number of wire gates to a circuit definition without actually changing the circuit. I
In order to have a unique network of gates for each circuit, we exclude the wire
from the repertoire of gates: A wire is just a renaming mechanism for variables.

We also exclude the fork from the repertoire of gates. A fork has one input and
at least two outputs. The fork f with input x and outputs y and z is defined by
the two p.r.'s x '-* y T,z T and -x ý-+ y 1,,z 4.. The generalization to an arbitrary
number of outputs is obvious. The gate

B.• xT

Bd X 4.

composed with fork f is equivalent to the gate with outputs y and z I
B' yT,zT

Bd & y4.,z4.

2

Hence, the fork is just a mechanism for replicating the outputs of a gate and for
defining gates with an arbitrary number of outputs. But gates defined in this way
have an important restriction: The effective execution of a production rule of a gate-
contains an effective transition on each output of the gate.

The only restriction on the class of circuits considered that these definitions and
conventions introduce is the exclusion of arbitration devices. They do not restrict
the delay-insensitivity assumption.

3. Partial Order of Transitions

The specification of a circuit defines a partial order of actions taken from a repertoire
of commands. In order to assert that a circuit implements a specification, we relate
this partial order to some other order relation among transitions of a circuit. And we
will say that a circuit implements a specification when the partial order of transitions
in each computation of the circuit contains the specification partial order in a way

that we will explain later.
Consider an effective execution of a p.r. with term C of the guard true, and let

t be the transition of this execution. (We assume that the guard is in disjunctive
normal form, i.e., it is either a literal, or a term, or a disjunction of terms. A literal
is a variable or its negation, and a term is a conjunction of literals.)

We attach to C a set T of transitions in the following way. Each literal of
C uniquely defines a transition: The literal x is the result of a transition of type
x T ; the literal -xz is the result of a transition of type x I. (The initialization of a
variable is also considered a transition.) By definition, we say that transition t is
a successor of each transition of T.

From the successor relation, we can now construct a relation -< which is a
pre-order, i.e., it is transitive and anti-reflexive.

Transitivity For any two transitions tl and t2, we say that tl -< t2 when t2 is
a successor of t1, or there exists a transition t3 such that tl -< t3 and t3 -< t2.

Anti-reflexivity t -< t holds for no transition t.

Anti-reflexivity is satisfied if, for each ring of gates in the circuit, there is always
at least one p.r. whose guard is true and whose result is false-the ring "oscillates."
Anti-reflexivity excludes rings of gates that are used to maintain constant values
of variables, like in cross-coupled device constructions of storage elements. We
therefore assume that the storage elements are parts of "perfect wires," so to speak,
which keep the value of a variable until the next transition on the variable.

Once we have the pre-order relation -<, we construct the partial order - by
defining tl -< t2 to mean tl -< t2 or tl = t2.

Definition. A chain from a to b is a finite, non-empty set {ti,O < i < n} of
transitions such that to = a, tn = b, and for all i, 0 < i < n, ti is a successor of
ti- 1 . By construction, a -< b means that there is a chain from a to b.

If a -< b, we will somtimes say that b follows a.

I 3

4. Implementation of Stability

Consider again an execution of pr. with guard B and transition t. Either B
is never falsified once it holds, but then t is the last transition on the variable I
involved-we say that the transition is final. Or B is falsified after a finite number
of transitions following t. In that case, in order to implement stability, we have to
see to it that t is completed before B is falsified.

For all transitions i that falsify B, we have to guarantee t -< i. Hence,
by definition of the order relation, there must be a transition s such that s is a
successor of t, and s -< i. We say that a acknowledges t.

Acknowledgment Theorem. In a d.i. circuit, each non-final transition t has a
successor transition.

By construction of multiple-output gates, we have the j
Corollary. In a d.i. circuit, a non-final transition on an input of a gate has a
successor transition on each output of the gate.

5. The Unique-Successor-Set Criterion

Later on, we shall give a simple criterion to decide whether a given circuit-a net- I
work of gates-is delay-insensitive. But such a criterion does not tell us whether
there exists a d.i. circuit for a given specification. We shall therefore formulate a
more general theorem which characterizes the partially ordered sequences of tran-
sitions that admit a d.i. implementation. This criterion enables us to decide that a
program does not have a d.i. implementation without having to construct a circuit.

A computation is a partially ordered sequence of transitions corresponding to
a possible execution of a circuit. It is finite if the computation terminates, and
infinite otherwise.

Successor Set. In a computation, the successor set of a transition t is the set of
variables x such that a transition tx on x is a successor of t.

Unique-Successor-Set Property. A computation has the unique-successor-set
(USS) property when all non-final transitions on the same variable have the same
successor set. A set of computations has the USS property when all non-final
transitions on the same variable have the same successor set in all computations of
the set.

Unique-Successor-Set Theorem. A set of computations of a d.i. circuit has the
USS property.

Proof. From the definition of the successor of a transition and the corollary, the
successor set of a non-final transition on a variable, say, y, is the set of output I
variables of the gate of which y is an input.

4I

Since this gate is uniquely defined by the circuit topology, the successor set is

unique for all transitions on y in all computations corresponding to an execution
of the circuit. 0

Although the Unique Successor Set Theorem is a direct consequence of the
Acknowledgment Theorem, its formulation in terms of computations instead of gates
makes it possible to lift the result from the implementation level to the specification
level. We assume that whatever specification notation is used-programs, traces,
regular expressions, temporal logic, etc.-it is possible to derive certain properties

of the partial ordering of actions involved from the specification. Hence, in the
sequel, a specification means a partially ordered sequence of actions taken from
some repertoire of commands.

Since the partially ordered sequence of actions defining the specification is a
projection of the sequence of actions implementing it, we shall investigate whether
the USS property is maintained by projection.

Definition. Given a computation c on a set V of variables, the projection of c
on a subset W of V is the computation derived frorr c by removing all transitions
on variables of V \ W from the chains of c. The projection of a set of computations
is the set obtained by projecting each element of the original set.

Projection Theorem. If a set of computations has the USS property, then its
projection on a subset of variables has the USS property.

Proof. By definition, the projection of a set of computations on W can be ob-
tained by removing the elements of V \ W one for one from all chains of each
computation of the set. We prove the theorem Lv showing that removing all tran-

sitions on one variable, say, w, maintains the USS property of the set.
Let x be another variable, and let X be the USS of (all transitions on) x in all

computations of the set. Either w does not belong to X and X is left unchanged
by the transformation. Or w is removed from X. But then, for each transition
tx on x, the successor set of the transition on w that follows tx has to be added
to the successor set of tx. Since all transitions on w have the same successor set
'in all computations of the set, the new X is the same for all transitions and all
computations of the set. 0

I EXAMPLE

The cyclic program *[X;Y] where X and Y are communication commands is
called a one-place buffer. It is a basic building block of asynchronous circ,'it design.
With a four-phase handshaking protocol for implementating the communications,
an expansion of the program is in terms of elementary variables is:

j *[[xi]; zo T; [--'Xi]; zo .; yo 1; [yi]; yo .1; [-,yi]]

where xi and yi are the input variables, and xo and yo are the output variables.

The command [B] is a shorthand notation for [B -+ skip], and can be informally
described as "wait until B holds".

I5

The environment of the circuit can be simply modeled as the two programs: I
[Xi T; [(o]; Xi j; [-,Hxol

,[[YoJ; Yi T; [--yo; yi 4.1

The three programs are concurrent. Now observe that the projection of an infinite
computation on the input variables of the first program gives the infinite computa-
tion described by the program

*[xi T;xi .; yi T; yi,].

Obviously, this infinite computation does not have the USS property and, there- l
fore, the closed circuit implementing the three programs is not d.i.. But the two
environment programs can be implemented with an inverter and a wire, which are
d.i circuits. Hence, a circuit implementing this version of the one-place buffer is
not d.i.. 0

6. Specifications and the USS Property I
The Projection Theorem is very useful becaure we can also define when a specifica-
tion has the USS property, so that if a specification does not have the property, we
can immediately conclude that there exists no d.i. implementation of the specifica-
tion. The projection from implementation to specification occurs as follows. 3

Given is an arbitrary command (or statement) S; S can be of any kind:
assignment, communication, procedure call, transition of a finite-state machine,
etc. We make the-in theory slightly restrictive-assumption that an elementary i
variable can be uniquely identified with each command of the repertoire, i.e., the
transitions on the variable occur in the executions of the command only, and each
execution of the command contains a transition on the variable. (This assumption
is needed for the specification theorem only.)

Consider then a specification implying a certain partial order of actions on a
given repertoire of commands X, Y, Z, etc. This partial order-which we now
call the specification-implies the same partial order on a set of transitions on the
elementary variables x, y, z, etc., that can be uniquely attached to the commands. I

Hence, the specification defines a projection of the computation on the set of
variables {x, y, z, ...). According to the Projection Theorem, we can then formulate
the following

Specification Theorem. If the specification of a circuit does not have the USS
property, the circuit has no d.i. implementation.

EXAMPLES The following examples, which we give without proofs, show how limited
is the class of programs that admit a d.i. implementation. (In the examples,
all commands are different from the empty command skip.) We assume that the

6 I
I

I
semantics of the program notation is clear enough that we can identify the programs
with the partial order of actions they represent.

* Let P - [SI; S2; ... S.], and assume that there is no equivalent program

I with k < n. (We say that P is a minimal representation. For instance, *[X; XI
is not minimal since *[X] is an equivalent program.)

Then P has the USS property only if Si $ Si for i : j. (That the condition
is not sufficient is shown by the previous example.) Hence, the "modulo-2 counter"
*[X; X; Y] and all other "modulo-k counters" have no d.i. implementation.
e The program *[SI; [B1 -. S20B 2 - 53]; S4], with S2 5 S3, does not have the USS
property. Hence, there is no d.i. circuit implementing such a selection command.

7. Gate characterization of d.i. circuits

Definition. An n -input gate in which B, is the conjunction of the n input vari-
ables and Bd is the conjunction of the negations of the n input variables is called
an n -input C-element. A gate derived from a C-element by negating one or more
literals in B. or Bd is also a C-element.

The Muller-C element is a two-input C-element according to our definition. A
one-input C-element reduces to either a wire or an inverter.

j C-element Theorem. If each computation of a d.i. circuit contains at least 3
transitions on each variable, the circuit comprises only C-elements, or gates that

* can be replaced with C-elements.

Proof. Let z be an arbitrary variable of the circuit; z is the input of gate g
with output z. We shall prove that g can be implemented as a C-element.

We consider an arbitrary computation of the circuit. First, observe that be-
cause of the non-interference, all transitions on the same variable are totally ordered.
And because all transitions are effective, upgoing and downgoing transitions on the
same variable alternate.

Since the circuit contains at least 3 (effective) transitions on each variable, at
least one transition of type x T is followed by a transition of type x I. And at least
one transition of type x I is followed by a transition of type x T-.

Let tl be a transition of type x T and t2 the transition of type x I following
it. For the guard of the p.r. of tl to be stable, there must be a transition tz on z
such that tl -< tz -< t2. We also know that tz is a successor of tl.

By the USS theorem and the Projection theorem, there is exactly one transition
tz on z such that tl -< tz -< t2. By the same argument, there is exactly one

I7
I

I

transition on z between a transition of type x I and the transition of type x T
following it.

Without loss of generality, assume that the first transition on x is of type x z
and the first transition on z is of type z T. Then, because of the alternation of
upgoing and downgoing transitions on each variable, each transition of type z T is
the successor of a transition of type x T . And each transition of type z I is the
successor of a transition of type x 4.

By definition of the successor relation, all terms of guard B, of g contain x.
Hence, B, is of the form x A C., where C, does not contain x. Symmetrically, I
guard Bd of g is of the form -,x A Cd, where Cd does not contain x. Since this
property of B, and Bd holds for each input of g, g is a C-element or can be
replaced with a C-element.]

8. For Whom the Bell Tolls?

Are these results tolling the bell of d.i. design? Actually, not. At worst, they may
slightly embarass those researchers who claim to have a design method for entirely
d.i. circuits. At best, they vindicate the compromises to delay-insensitivity adopted
by several asynchronous design methods.

The compromise I have introduced is that of isochronic forks. In an isochronic
fork, the transitions on all outputs of the fork are completed when a transition on
one output has been acknowledged. Hence, some transitions on some outputs of an
isochronic fork need not be acknowledged, and thus the Acknowledgment Theorem
does not always hold.

The extension of a standard repertoire of d.i. gates with isochronic forks is
sufficient to construct any circuit of interest. I believe it is the weakest possible
extension in the sense that any other compromise includes isochronic forks.

9. Acknowledgments

The formulation of the C-element Theorem in terms of three transitions on each
variable is due to a suggestion from Pieter Hazewindus. Acknowledgment is also due
to Steve Burns, Peter Hofstee, Marcel van der Goot, Tony Le , and Jose Tierno for
their comments and criticisms. The research described in this paper was sponsored
by the Defense Advanced Research Projects Agency, DARPA Order number 6202,
and monitored by the Office of Naval Research under contract number N00014-87-
K-0745. I

8

I
8

I

j A Framework for Adaptive Routing in Multicomputer Networks

John Y. Ngai and Charles L. Seitz
Department of Computer Science
California Institute of Technologyo

Introduction proach studied by the authors. A much more detailed
Message-passing concurrent computers, also known as exposition, including results on performance modeling
multicomputers, such as the Caltech Cosmic Cube [I1 and fault-tolerant routing, can be found in 151.
and its commercial descendents, consist of many cor- The Adaptive Cut-Through Model
puting nodes that interact with each other by sending It is clear that in order for the adaptive multipathand receiving messages over communication channels I scerta nodrfrteaatv utptbetween the nodes o2v. The communication networks scheme to compete favorably with the existing obliviouswormhole technique, it must employ a switching tech-of the second-generation machines, such as the Symult nique akin to virtual cut-through 161. In cut-through
Series 2010 and the Intel iPSC2, employ an obliviouits. , g
wormhole routing technique 13,41 that guarantees dead- switching and its blocking variant, which is used inlock freedom. The network performance of this highly oblivious wormhole routing, a packet is forwarded ima-
l ok frev edobmivious Tehniqe ne r pormached of this high mediately upon receipt of enough header information to
evolved oblivious technique has reached a limit of be- make a routing decision. The result is a dramatic reduc-ing capable of delivering, under random traffic, a stable make i tine d ecyson. the conventic re-maximum sustained throughput of • 45 to 50% of the tion in the network latency over the conventional store-
mlimit set by the network bisection bandwidth. Further and-forward switching technique under light to mod-
limproements by th ese networkbisectin bdwid. r uir the r erate traffic. We now describe a simple cut-through
improvements on these networks will require an adaip switching model that provides the context for the dis-
tive utilization of available network bandwidth to diffuse cussion of issues involved in performing adaptive routing
ocal congestions. in multicomputer networks. The following definitions

In an adaptive multipath routing scheme, message develop the notation that will be used throughout the
routes are no longer deterministic, but are continuously rest of the paper.
perturbed by local message loading. It is expected that Definition 1 A Multicomputer Network, M, is a con-such an adaptive control can increase the throughput nected undirected graph, M = G(N, C). The verticescapability towards the bisection bandwidth limit, while of the graph, N, represent the set of computing nodes.maintaining a reasonable network latency. While the The edges of the graph, C, represent the set of bidirec-
potential gain in throughput is at most only a factor tional communication channels.
of 2 under random traffic, the adaptive approach offers
additional advantages, such as the ability to diffuse lo- Definition 2 Let ni E N be a node of M. The set,

cal congestions in unbalanced traffic, and the potential Ci C C, is the set of bidirectional channels connecting
to exploit inherent path redundancy in richly connected , to is theos i o co
networks to perform fault-tolerant routing. The rest of ni to its neighbors in M.
this paper consists of an examination of the various fea- Definition 3 The width, W, of a channel is the number
sibility issues and results concerning the adaptive ap- of data wires across the channel. A flit, or flow control

unit, is the W parallel bits of information transferred in
"The research described in this paper was sponsored in part a single cycle. The flit is the unit used to measure the

by the Defense Advanced Research Projects Agency, DARPA Or- length of a packet.
der number 6202, and monitored by the Office of Naval Research
under contract number N00014-87-K-0745; and in part by grants Definition A Given a pair of nodes, ni and ny, the set,from Int.el Scientific Computers and Ametek Computer Research iorutsjnng4toji hefxdadpd-Division. Qio otsjoining rj to n•- is the fixed and prede-

termined set of directed acyclic paths from the source
Published in SPAA '89, June 1989, node, fl, to the destination node, ni.
copyright ACM Definition 5 For each destination node, ni, the prof-

itable channel set, RP . Ci, is the subset of channels*
i

I
In other words, forwarding a packet along the routes in 'o Neiq Ro~te,

Q11 is equivalent to sending it out through a profitable
channel in Ri,. 6

Definition 6 For each node, ni E N, the Routing Re- Processor

lation R• {(ni,,Ck) : n, E N-(ni},) c, E A•i} defines . 7I
for each possible destination node, nr E N, its corre-

sponding profitable channel set, 14-. Router

Definition 7 The actual path a packet traverses while
in transit in the communication network is referred to as

the trajectory of the packet. Packet trajectories are iden-

tical to the packet routes in oblivious routing schemes

but are non-deterministic in our adaptive formulation. Memory

We assume the following: < message

"* Long messages are broken into packets that are the Iterace

logical data entities transferred across the network.

"* Packets are of fixed length; ie, packet length = L, Figure 1: Structure of a node. I
where L is a network-wide constant.

assures an identical number of input and output com-
" Complete routing information is included in the munication channels in each node, irrespective of the

header flit of each packet. underlying network topology. The fixed-packet-length I
assumption is not essential and can be replaced by

" Packets are forwarded in virtual cut-through style. asbumpded-packetlengthnassumpnionanebepacketclengta bounded-packet-length assumpt.ion, ic, packet length m

"• A message packet arriving at its destination node S L, without invalidating any of our major results. It

is consumed. This is commonly known as the con- is adopted solely to simplify the exposition.

sumption assumption. Communication Deadlock Freedom 3
"• A node can generate messages destined to any other In any adaptive routing scheme that allows arbitrary

node in the network. multipath routing, it is necessary to assure freedom
from communication deadlock. Communication dead-

"* Nodes can produce packets at any rate subject to lock is caused generically by the existence of cyclic de-
the constraint of available buffer space in the net- pendencies among communication resources along the
work, and packets are source queued. message routes. Methods to prevent communication

"• Each nde in the network has complete knowledge deadlock have been intensively researched and many
Eac its own routhg nelatwork schemes exist; of these, the methods of structured buffer

of its own routing relation, pools 171 and virtual channels [8] are representative.

Figure 1 presents our view of the structure of a node In essence, all of these methods approach the prob-

in a multicomputer network. Conceptually, a node can lem by re-mapping any dependency that is potentially

be partitioned into a computation subsystem, a com- cyclic into a corresponding acyclic dependency struc-

munication subsystem, and a message interface. For ture. These methods employ restructuring techniques

our purpose, the computation subsystem serves as the that require information of a global, albeit static, char-
producer and consumer of the messages routed by the acter. In contrast, a very simple technique that is inde-

communication subsystem of the node. The message in- pendent of network size and topology, using voluntary

terface consists of dedicated hardware that handles the misrouting, was suggested in (91 for networks that em-
overhead in sending, receiving, and reassembling mes- ploy data exchange operations. Such a preemption tech-
sage packets. Internally, the communication subsystem nique utilizes only local information, and is dynamic in

consists of an adaptive control and a small number of character. It prevents deadlock by breaking the poten-

zi-essage-packet buffers. Routing decisions are made by tially cyclic communication dependencies into disjoint

the adaptive control, based entirely on locally available paths of unit length. Voluntary misrouting can be ap-

information. The bidirectional channel assumption is plied to assure deadlock freedom in cut-through switch-

adopted to allow the network to exploit locality in gen- ing networks, provided the input and output data rates

eral message-communication patterns. Furthermore, it across the channels at each node are tightly matched.

2

7 Output c_...... _ oto wait for the RC and KC signaling events from all neigh-
_ _O C Cbors. The handshaking events, R& and Rf, interlock

< Request ýo. 0 put '•R R with events V., Vj' to guarantee the stability and strict
alternation of each other. The initial state of a chan-

Output Cota Va i R anel has both directions of the channel ready to accept

Inpu Akno..,0 96 a new data flit, and proceeds thereafter in a demand-
o driven fashion. Figure 2 shows a possible conceptualS, t ..•x../-'-•. •realization of the protocol under the two-phase signal-

- ing convention t111 popular for off-chip communication.

input Chion 0oto Since all the handshaking events defined are local be-

tween nearest neighbors, a network following the coher-

Figure 2: Two-phase protocol signaling. ent protocol is arbitrarily extensible.

Observe that under cut-through switching, a packet can
A simple way is to have all bidirectional channels of span many different channels. An outgoing channel oc-
the same node operate coherently under the protocol cupied by a packet may not be able to assert V. until
described next. after valid data has been asserted by the corresponding

The Coherent Protocol. We now describe the chan- incoming channel occupied by the packet; this induces
nel data-exchange protocol in detail. It is used to match matching of data rates across the two occupied chan-
the transfer rates across all channels of the same node. nels. The notion of coherency introduced here is a nat-
The protocol employs four control signals per channel, ural way to accommodate such potential dependencies
two from each of the communicating partners, and is among the various channels of a node under cut-through
completely symmetric between the partners. The sig- switching. Another notion that arises naturally is that
naling events for a channel, c E C, are: of a null flit. To effect a transfer of data in one direc-

tion of a channel while the opposite direction is idle, the" Ro - output event to the communicating partner receiving partner is required to transmit a null flit in or-
indicating that this node is Ready to accept an- der to satisfy the convention dictated by the exchange
other input flit from its partner. It also serves as protocol.
an acknowledgment to its partner of the successful

completion of the previous transfer cycle. Deadlock Freedom. We now demonstrate that to as-
"sure communication deadlock freedom for networks op-

-• input event from the communicating part-. erating under the coherent protocol, it is sufficient to
ner indicating that the partner is Ready to accept employ voluntary misrouting to prevent potential buffer
another output flit from this node. It is also an overflow. To proceed, observe that routing under the
acknowledgment from the partner of the successful cut-through switching model imposes the following in-
completion of the previous transfer cycle. tegrity constraints:

"Vo - output event to the communicating partner 1. Packets must always be forwarded to neighbors
indicating that the data flit values currently held with their header flits transmitted first. In particu-
at the output channel of this node are Valid and lar, voluntary misrouting of any internally buffered
its partner should latch in the held values, packet must start from the header flit of the se-

* ViC - input event from the communicating part- lected packet.

ner indicating that the data flit values curinctly
asserted at the input channel of this node are Valid 2. Once the flit stream of a packet has been assigned a
and the node should latch in the held values, particular outgoing channel, the assignment must

We proceed to define our handshaking protocol across be maintained for the remaining cycles until the

channels of a node, nk E N, in a CSP-like notation 1101: entire packet has been transmitted.

R.-~, [Vc E Ch, Rfl; apply out data; These constraints exist because all of the necessary rout-
V E Iing information of a packet is encapsulated in the packeto, E Ck, Vi1; latch in data; header. Interrupting a packet flit stream mid-transfer

C _r've that Ro and V, denote, respectively, the unique would render the latter part of the packet undeliver-
outgoing Ready and data Valid signaling event to all able. To establish deadlock freedom, it is sufficient to
neighbors of nA1. This enforces the matching of outgo- show that each node can independently complete each
ing data rates. On the other hand, the matching of in- transfer cycle and initiate a new one, in a bounded pe-
coming data rates is enforced through the synchronized riod, without violating the stated constraints. We now

3

1
show that as long as we have an equal number of in-

put and output channels per node, a condition satisfied
readily by our bidirectional channel assumption, we can H B H

always satisfy the stated logical requirements, thereby c c G

assuring freedom from conmnunication deadlock. F 0 F

Theorem I Let M denote a coherent multicomputer E E

network where each node has an equal number of input

and output channels. If M employs voluntary misrout- 2 3
ing to prevent potential buffer overflow, then it is free

from deadlock. 1 4
We need to show that buffer overflow can al-

ways be prevented by misrouting without violating the A A

cut-through switching integrity constraints. We proceed H B H B

with a counting argument: Let d denote the number of C C G C

channels at a node. During a protocol cycle, there may F E 0 F E Q

be as many as n' < d new data flits arriving at the in- E

put channels. A fraction of these, 0 : na' • n*, are new

header flits; the remaining n* - n' are non-header flits

of arriving packets. Of these non-header flits, a fraction Figure 3: Livelock due to bad assignments.

of them, 0 :_ n" < n" -n', belong to packets that have i

already been assigned output channels, and the remain- incoming packets both request the same outgoing chan-

ing n" - n'- ," flits belong to waiting packets that are nel, the packet from the clockwise neighbor always wins.

buffered inside the node. Therefore, the node has at Given that, initially, nodes A, C, E, and G each receive

least a total of n'-+ (n" - n' - n") header flits that are two packets destined to nodes that are, respectively, dis-

eligible for immediate routing. Hence, in the iollowing tance two from them in the clockwise direction, after

cycle, a node can find at least n'+(n-n'-in")i+n" = n" four routing cycles, the packets are all back to where l3

flits that can be transmitted or misrouted without vi- they started! This example illustrates that packets can

olating the cut-through switching-integrity constraints. be forever denied delivery to their destinations even in

This assures that no buffer overflow will occur. Since the the absence of communication deadlock. U
node can always complete its protocol cycles in bounded Channel-access competitions are, however, not the only

time, the network is free from deadlock. M type of conflict that can lead to livelock. Consider the

situations depicted in figure 4 for the same bidirectional I
Since the validity of the above proof does not depend ring network. The traffic patterns are coincidental in U
on a node's storage capacity, deadlock freedom is es- such a way that none of the packets will ever have a

tablished independent of the amount of available buffer chance to select its own output channel; rather, at every

space. The simple criterion of having an equal num- node, each packet must be forwarded along the only

ber of input and output channels is sufficient to assure remaining channel, in compliance with the voluntary

deadlock freedom for a coherent network. In practice, misrouting discipline, in order to avoid deadlock. It
additional buffers are needed in order to inject packets is clear that no matter what assignment strategy one

into the network, and to improve the network perfor- chooses, it is impossible to break this kind of livelock

mance. without adding extra buffers per node. In other words,

Network Progress Assurance additional measures and resources have to be introduced 1
The adoption of voluntary misrouting renders communi- in order to assure progress, ie, delivery of packets, in the

cation deadlock a non-issue. However, misrouting also network.
creates the burden of having to demonstrate progress Buffering Discipline and Requirement. In order to 1
in the form of message-delivery assurance. In partic- assure packet delivery in spite of voluntary misrouting, I
ular, a network can run into a livelock. Consider the extra buffers are required to store packets temporar-

sequence of routing scenarios depicted in figure 3 for ily. In particular, sufficient buffers must be provided to

a bidirectional ring consisting of eight nodes and eight allow the adaptive control to give any newly arriving
packets. Each of the packets consists of four data flits packet a chance to escape preemption if so determined

that span multiple channels and internal buffers. Sup- by the assignment algorithm. We now demonstrate the

pose the nodes employ the following simple, determin- existence of such a solution using a bounded number of i
istic, packet-to-channel assignment, lie: Whenever two

4I

I

n D"rect Cut-Tnro.,.gn

" ully Buffered

nC C= C ac
F 0 F D Partially 0Buffered

E E n4III
empty

4 1 n5 >1!1Leaving

n6 => p~it• "r'''

A A
!-ai ire

H H B Figure 5: Accounting of buffer allocations.

F F D assignment algorithm always favors the latest-arriving
E E packet by requiring it to stay and avoid preemption.

and has each occupy a distinct buffer. Given the above
arrival sequence, at cycle t = L+ 1, packet Pd-I will

Figure 4: Livelock due to lack of assignments. be forwarded through c*, which now becomes idle. As
a result, each packet from P, up to Pd will have to be

buffers. We assume the following buffering discipline: temporarily stored as it arrives. Since each packet must

be allocated to a distinct buffer, we must have b >_ d.
1. Storage ii divided into buffers of equa sise; each kt We now show that having b = d buffers is also sufficient.

Theorem 2 Let M be a coherent network where each

2. Each buffer has exactly one input and one output node has b packet buffers inside the router operating
port; this permits simultaneous reading and writ- under the stated assumptions. Then b = d buffers perI . ing. A good example is a FIFO queue of length router is necessary and sufficient to always allow at least
L. one packet, chosen arbitrarily by the assignment algo-

_l rithm at each node, to escape preemption.I 3. Except as stated below, a buffer can be occupied

by only one packet at a time. Oftentimes a packet Proof. Necessity follows immediately from the pre-

may not fill its entire buffer, as in case of a partial ceding discussion. We proceed to establish sufficiency
cut-through. Such a packet occupies both the input through a counting argument. Observe that a node is
and output ports to the buffer. required to consider misrouting of packets in the next

4. A buffer can be used temporarily to store two pack- cycle only when there are new packets arriving at the
ets at a time, if and only if, one of them is leaving current cycle. Figure 5 depicts an accounting of all

possible cases of buffer allocation at the end of any
through the output port connected to an output such routing cycle. Let n1 up to n 7 denote, respec-

channel, and the other is entering through the in- tively the number of packets or bdffers in each case;

put port connected to an input channeL and no denote the number of newly arrived packets.

Let b and d denote, respectively, the number of buffers Then, for inputs, we have no + n1 + n3 + n6 + n7 <_ d;
and channels, ie, the degree, at each node. First, we for outputs, we have nfj+n 5 +f" + n7 _< d. To simplify
observe that given the above buffering discipline, we the counting argument, let us assume for the moment
must have b > d. To see this, assume that L :3 d, and that no = 1. Let P" denote the privileged packet cho-
consider the following sequence of events at a node with sen by the assignment algorithm to stay behind and
all buffers initially empty: At cycle t = 0, a packet P0 avoid misrouting in the following cycle. P" must be

arrives and is forwarded to its requested output channel either a newly arrived packet or an already buffered
c" at cycle t = 1. Then, at cycles t = L - d up to packet. If P" is a buffered packet, then either the
t = L-2, a total of d-1 packets, Pi, i- 1,...,d-1, newly arriving packet finds an idle output channel to
arrive one after another in d -1 consecutive cycles, all directly cut through the node, or else we must have
requesting the same output channel c*. Finally, at cycle n 1 +n5+ne+n7 = d =: n5 > no+n 3 , which, ar. turn, im-

t = L + 2, another packet Pd arrives, requesting the plies that there will always be an available buffer ready

same channel c*. The worst case happens when the to accept it. On the other hand, if P* is a newly arriv-

5

I

I
ing packet, then either n 4 + ns > 0, and, hence, there packets with shorter distances from destination then to
is a buffer ready to accept it, or else we must have those with longer distances, as follows:
n2 +n 3 + nG+n 7 = b = d. This, together with the above Iinequality on inputs, =*- n2 _: no+ni =ý, n2 > 0. Fuir- P 2•D 2

thermore, no > 0 =* nl+nG+n 7 < d. In other words, where P is a packet's priority and D its distance from
the packet will be able to find at least one buffer with destination. We now show that this is sufficient to guar-
a full idle packet as well as an idle output channel to antee livelock freedom.
preempt this idle p~acket and thus make room for itself. Theorem 3 A packet-to-channel assignment strategy
This establishes t.e ',alidity for single-packet arrivals. that observes the defined distance priority, together U
Finally, repeated ajplications of the above argument with the set I of metric-based routing relations, guar-
then establish the validity for multiple packet arrivals, antees livelock freedom in a network.
and, therefore, the sufficiency condition. Proof. At the beginning of a routing cycle, let D > 0

The trick in allowing the escape from misrouting for be the minimum packet distance from destination. Dur-
any arbitrarily chosen packet is to provide at least a ing this cycle, a packet with distance D competes with

critical, minimum number of buffers that is sufficient other packets for channels leading to its destination. If

to assure either that empty buffers still exist, or that it wins the competition, it will be forwarded along a I
all buffers have been occupied, and, hence, that there profitable channel within L cycles. It it loses, it must
is some other packet that can be misrouted instead. be to another packet also distance D away from its desti-

The particular number required depends on the adopted nation, according to the defined priority. In both cases,
buffering structure and discipline; adding more buffers the minimum distance is reduced to < D within L cy-

per node will allow the assignment algorithm to operate des. Therefore, D will eventually be reduced to zero, in

with more flexibility and perform better. In any case, which case a successful packet delivery occurs and the
by having a sufficient number of buffers, competition of above argument can be applied again to assure repeated Iprofitable channel access is transformed into a compe- deliveries. This establishes livelock freedom. 0

tition for the right to stay behind and wait until the Observe that although the distance priority alone suf- U
winner's profitable channel becomes available, at which fices to guarantee global progress in a message network, U
time it will be forwarded. Hence, winners chosen by no corresponding statement can be made concerning
the assignment algorithm will have the chance to follow each individual packet. This is because it is possible for
the actual paths determined by the routing relations, packets that are far away from their destinations to be
In a sense, assurance of packet delivery has now been repeatedly defeated by newly injected packets that are
reduced to that of picking consistent winners across the closer to their respective destinations. A more complex
network. priority scheme that assures delivery of every packet can

Packet-Priority Assignments. An effective scheme be obtained by augmenting the above simple scheme
for picking consistent winners that is independent of any with age information, with higher priorities assigned to
particular network topology is to resolve the channel- older packets:

access conflicts according to a priority assignment. In (A 1 , DI) > (A 2 , D 2) = I
particular, the process of forwarding a packet towards (A, > A2) v ((A, = A2) A (DI < D2)),
its destination can be viewed as a sequence of actions where A is a packet's age, that is, the number of routing
performed to reduce the packet's distance from destina- whes appdsince thes inection of the packet. EmpirinLion, provided that the set R -- {Ji} of routing rela- cycles elapsed sneteinjection o h akt mii
tions isovidefed inat thermsetR=(A-) of arly ing metri e cal simulation results indicate that the simple distance-tions is defined in term s of an underlyin g m etric of the a s g m n c e ei uf c e t f r a m s l i u t o s
network. In this case, as the result of a channel-access assignment h eme s ent for almost all situations, •
conflict, the winner will be routed along a profitable except under an extremely heavy applied load.
channel, thus decreasing its distance from the destina- Network-Access Assurance
tion. The losers, depending on whether or not they are A different kind of progress assurance that requires
misrouted along the remaining unprofitable channels, demonstration under our adaptive formulation is the I
may or may not increase their distance from destina- ability of a node to inject packets eventually. Because
tion. Ideally, one would prefer a strict monotonic de- of the requirement to maintain strict balance of input
crease of distance to destination for each packet routed and output data rates, a node located in the center of
in the network. As this is impossible under our adaptive heavy traffic might be denied access to the network in-
model, the alternative is to ensure monotonic decrease definitely. Figure 6 depicts a possible conceptual re-
over a sequence of exchanges involving multiple pack- alisation of a message interface. Its operation is simi-
ets. This can be achieved by giving higher priority to lar to the register insertion ring interface described in I

6

I

:Z e-••[... below a predetermined threshold. In this way, the num-

i I I I F .I, hPý(C ber of round-trip packets can be dramatically reduced
SDest when traffic is relatively moderate. Unfortunately, as

Cut--_rouh .,j•.g packets also increases, thus further decreasing useful
i ' ••... ... "•:•m==• network bandwidth.tafcdniyicees the.population of round-tri

O,.tp•t Choa-, Packet-Injection Control. A different scheme that

does not incur this overhead is to have the nodes main-
ProsoP.../M,,oq tain a bounded synchrony with neighbors on the totalI. P /umeory number of injections. Nodes that fall behind will, in

effect, prohibit others from injecting until they catch
Figure 6: Inside the message interface. up. We shall adopt the convention that a node hav-

[121. It uses two FIFO buffers that can be connected to i, during each routing cycle, every node eitherject has a null packet queued up;

the output channel towards the network via a switch. null or real packet ready to inject or else is in the pro-Whenever the node has a packet to transmit, it loads cess of injecting a real packet. The null-packet con-

the packet into the injection buffer as soon as the buffer vention is required to prevent quiescent nodes that dobecomes empty. When message traffic arrives from the not have any packet to inject from blocking injections
network input channel, it passes through the destina- in the active nodes. Our scheme is to introduce local
tion check logic, which redirects any traffic destined to synchronization among neighboring nodes such that the
this node to the node memory. Any remaining passing total number of packets injected by a node after each
traffic is loaded into the cut-through buffer, which is routing cycle will not differ by more than K, a positive
normally connected to the output channel. Whenever constant, from those of its neighbors. We assume that
the cut-through buffer becomes empty, the control logic each node explicitly maintains records of the total num-
checks to see if there is an output packet waiting for ber of packet injections made by each of its neighbors,
injection. In such case, the switch is toggled so that measured relative to that of its own, and that the infor-
the output channel is connected to the injection buffer, mation required to update these records in each node
and the injection proceeds. As the output packet is is exchanged on separate direct links between the mes-
being forwarded, any passing traffic is loaded into the sage interfaces among neighbors. A node is allowed to
cut-through buffer. The switch connection is flipped inject its queued packet only if its own number of to-
back to the cut-through buffer after injection has been tal injections is fewer than K packet injections aheadfinished, and the process repeats. The main interesting of its minimum neighbor. Nodes that are allowed to
property of the message interface for our current discus- inject will examine their queued packets. Null packets
sion is that it provides the mechanism to capture and are always injected by convention, whereas real packets
accumulate interpacket gaps, which need not be con- are injected only if the injection mechanism described

tiguous, as empty spaces inside the cut-through buffers. previously finds at least one empty buffer available to
When enough space has been collected, ie, the entire absorb the injection transient. We now show that, with
packet length, L-,nce, an entire empty buffer, another eventual delivery of the packets already injected, this
new packet can be injected into the network. With such injection synchronisation protocol establishes coopera-
a mechanism, the question of assuring eventual packet tion among the nodes to assure the eventual occurrence
injection is translated into that of assuring arrival of of empty cut-through buffers in the message interface
enough interpacket gaps whenever a node has a packet for nodes that have real packets waiting for injection as
injection outstanding. permitted by the protocol.

Round-Trip Packets. One simple way to assure net- Lemma 4 A node that has a packet waiting for injec-
work access is to have each packet delivered by the net- tion that is permissible under the above injection pro-
work be returned to its original sender upon arrival at its tocol will eventually inject.
destination. Since each message interface starts with an
empty injection buffer, consumption of its own round- Proof. Observe that, by convention, if the pending
trip packets will always restore its ability to inject the packet is null, the node is al'V to inject immediately,
next source-queued packet. More sophisticated versions so that the lemma is true vacuously. We now proceed
of such a scheme will use several cut-through buffers, to establish its validity for real packets. Suppose, to
and will demand that packets be returned only if the the contrary, that a particular node, n E N, is blocked
stock of empty cut-through buffers has been depleted from injection indefinitely because the injection mech-

anism cannot accumulate sufficient empty buffer space

U 7U

1
to absorb the injection transient. Our injection proto- 16 X 16 2D Mesh

col then dictates that its neighbors also will be blocked 1.0

indefinitely from injecting. These, in turn, indefinitely Iblock their neighbors, and so on. Given a finite network, 0.sPi

all nodes are eventually blocked from any further injec- 0.6

tion, and eventually no new packet can enter the net-
work. Given the eventual delivery guarantee for packets 0.4 Oblivious

already injected, ultimately the network will be void of 0.2

packets; at that point, the input channel to the inter-
face of n will become idle, thus enabling it to resume 0.0 I

0.0 0.2 0.4 0.0 0.5 1.0
the accumulation of empty spaces inside the cut-through A pplied Load

buffer. Eventually, it will have collected enough spaces
to enable the injection of its queued packet into the net- Figure 7: Throughput versus applied load. I
work. This contradicts the original indefinite blocking
assumption of n, and thereby establishes the validity of
the lemma. a 01X 16 2D Mesh

We are now ready to show that by following the above I
injection protocol every individual node will eventually 300 Adaptive

be permitted to inject, and, hence, according to the Oblivious

above lemma, all will eventually inject. Specifically, let 200

M be a network, and let Ti denote the total number of
packet injections from node ni E N since initialization. 100

We now prove that Ti is strictly increasing over time.

Theorem 5 Given the injection protocol and a finite 0.1 0.2 0.3 0.4 0.6 0.6 0.7 o.8
network that is livelock free, the total number of packet Throughput

injections for each node strictly increases over time.1
Proof. During a routing cycle, let t = minn,EN T, Figure 8: Message latency versus throughr.ut.
denote the minimum among numbers of packet injec- I
tions since initialization, taken over all the nodes of the latency. Figue 7 plots the sustained normalized net-
network, and let S = {n• E NIT, = t} denote the set work throughput versus the normalized applied load of

of nodes that have recorded the minimum number of the oblivious and adaptive schemes for a 16 x 16 2D-

packet injections since initialization. Since K > 0, ac- mesh network under random traffic. The normalisa- 1
cording to our protocol, every node n E S is permitted tion is performed with respect to the network bisection
to inject. Lemma 4 then guarantees eventual injections bandwidth limit. Starting at a very low applied load,

from all of the nodes in S; hence, t, the minimum num- the throughput curves of both schemes rise along a unit
ber of packet injections per node, is guaranteed to even- slope line. The oblivious wormhole curve levels off at

tually increase over time. This, in turn, guarantees that % 45 - 50% of normalized throughput but remains sta-

T, strictly increases over time, Vni E N. ble even under an increasingly heavy applied load. In
contrast, the adaptive cut-through curve keeps rising 1

Hence, we are assured of eventual packet injection for along the unit slope line until it is out of the range of
each individual node of the network. In other words, collected data. It should be pointed out, however, that
the above theorem establishes fairness in network access the increase in throughput obtained is also partly due to
among all the nodes. the extra silicon area invested in buffer storage, which

Performance Comparisons makes adaptive choices available.

An extensive set of simulations was conducted to ob- Figure 8 plots the message latency versus normalized
tain information concerning the potential gain in per- throughput for the same 2D-mesh network for a typical I
formance by switching from the oblivious wormhole to message length of 32 flits. The curves shown are typ-
the adaptive cut-through technique. We now summa- ical of latency curves obtained in virtual cut-through
rize very briefly the typical kind of behaviors observed in switching [61. Both curves start with latency values *
these simulations. A much more detailed discussion can close to the ideal at very low throughput, and remain
be found in [5]. Among the various statistics collected, relatively flat until they hit their respective transition
the two most important performance metrics in commu- points, after which both rise rapidly. The transition 1
nication networks are network throughput and message points are P 40% and 70%, respectively, for the oblivi-

8I

ous and adaptive schemes. In essence, adaptive routing [11i Charles L. Seitz, "System Timing,, Introduction to
control increases the quantity of routing service, It, net- VLSI Systems, Chapter 7, C. Mead & L. Conway,
work throughput, without sacrificing the quality of the Addison-Wesley, 1980.

provided service, it, message latency, at the expense of (121 M. T. Liu, 'Distributed Loop Computer Networks,*
requiring more silicon area. Advances in Computers, M. Yovits, Academic Pres:

S a 163-221, 1978.I Summary
Several issues related to adaptive cut-through routing

have been addressed in the course of this research,
and we did not encounter any insurmountable problem.
Rather, the simplicity of these resolution mechanisms
gives us hope that the adaptive scheme can be made to
improve on the already highly evolved oblivious routing
scheme. The discussion in this paper has focused on
issues concerning the feasibility of the proposed adap-
tive routing framework. Within this framework, we
also have studied and found promising approaches to
fault-tolerant routing. Clearly, more work remains to
be done. Perhaps the most challenging of all is to real-
ize on silicon the set of ideas outlined in this study.

References

[1] Charles L. Seitz, "The Cosmic Cube,* CACM, 28(1):
22-33, January 1985.

[21 William C. Atha* and Charles L. Seitz., 'Multi-
computers: Message-Passing Concurrent Computers,*
IEEE Computer: 9-24, August 1988.

[31 William J. Dally and Charles L. Seitz, 'The Torus
Routing Chip,* Distributed Computing (1): 187-196,
1986.

[4] Charles M. Flaig, VLSI Mesh Routing Systems. Cal-
tech Computer Science Department Technical Report,
5241:TR:87.

[51 John Y. Ngai, Adaptive Routing in Multicomputer
Networks. Ph.D. Thesis, Computer Science Depart-
ment, Caltech. To be published.

[6] P. Kermani and L. Kleinrock, 'Virtual Cut-Through:
A New Computer Communication Switching Tech-
nique," Computer Networks 3(4): 267-286, Sept.
1979.

[7] P. Merlin, and P. Schweitzer, ODeadlock Avoidance in
Store-and-Forward Networks - I: Store-and Forward
Deadlock," /EEE Transactions on Communications,

Vol. COM-28(3): 345-354, March 1980.

[8] William J. Dally and Charles L. Seits, "Deadlock-Free
Message Routing in Multiprocessor Interconnection
Networks,* EEE Transactions on Computers, Vol. C-
36(5): 547-553, May 1987.

[9] A. Borodin, and J. Hopcroft, 'Routing, Merging, and
Sorting on Parallel Models of Computation,' Journal

of Computer and System Sciences 30: pp. 130-145,
1985.

[101 Alain J. Martin, "A Synthesis Method for Self-timed
VLSI Circuits," Proc. 1987 IEEE International Con-
ference on Computer Design: VLSI ;n Computers &

Processors, IEEE Comp. Soc. Press: 224-229, 1987.

9

California Institute of Technology
Computer Science Department, 256-80

Pasadena CA 91125

Technical Reports
18 October 1989

Prices include postage and help to defray our printing and mailing costs.

Publication Order Form
go order reports fill out the last page of this publication form. Prepayment is required for all materials. Purchase orders will not

_e accepted. All foreign orders must be paid by international money order or by check for a minimum of $50.00 drawn on a U.S.
ank in U.S. currency, payable to CALTECH.

._CS-TR-89-11 $9.00 Reactive-Process Programming and Distributed Discrete-Event Simulation, PhD Thesis
L Su, Wen-King

CS-TR-89-10 $7.00 Silicon Models of Early Audition, PhD Thesis
Lazarro, John

I CS-TR-89-09 $15.OOA Framework for Adaptive Routing in Multicomputer Networks, PhD Thesis
Ngai, John

__CS-TR-89-07 $6.00 Constraint Methods for Neural Networks and Computer Graphics, PhD Thesis
Platt, John

CS-TR-89-06 $1.00 The First Asynchronous Microprocessor: The Test Results
Martin, Alain J, Steven M Burns, T K Lee, Drazen Borkovic, and Pieter J Hazewindus

CS-TR-89-05 $2.00 The Essence of Distributed Snapshots
Chandy, K. Mani

.. _CS-TR-89-04 $5.00 Submicron Systems Architecture Project
ARPA Semiannual Technical Report

_CS-TR-89-03 $3.00 Feature-oriented Image Enhancement with Shock Filters, I
$. Rudin, Leonid I with Stanley Osher

C-CS-TR-89-02 $3.00 Design of an Asynchronous Microprocessor
Martin, Alain J

LCS-TR-89-01 $4.00 Programming in VLSI From Communicating Processes to Delay-insensitive Circuits,
SMartin, Alain J

CS-TR-88-22 $2.00 Variants of the Chandy-Misra-Bryant Distributed Discrete-Event Simulatio~t Algorithm,
Su, Wen-King and Charles L Seitz

CS-TR-88-21 $3.00 Winner-Take-All Networks of O(N) Complexity,
Lazzaro, John, with S Ryckebusch, M A Mahowald and C A Mead

_ _CS-TR-88-20 $7.00 Neural Network Design and the Complexity of Learning,I Judd, J Stephen

.____CS-TR-88-19 $5.00 Controlling Rigid Bodies with Dynamic Constraints,
Barzel, Ronen

CS-TR-88-18 $3.00 Submicron Systems Architecture Project,
ARPA Semiannual Technical Report

C-___ TR-88-17 $3.00 Constrained Differential Optimization for Neural Networks,
Platt John C and Alan H Barr

CS-TR-88-16 $3.00 Programming Parallel Computers,
Chandy, K Mani

.CS-TR-88-15 $13.O0Applications of Surface Networks to Sampling Problems in Computer Graphics, PhD Thesis
Von Herzen, Brian

U-CS-TR-88-14 $2.00 Syntax-directed Translation of Concurrent Programs into Self-timed Circuits
Burns, Steven M and Alain J Martin

. CS-TR-88-13 $2.00 A Message-Passing Model for Highly Concurrent Computation,
Martin, Alain J

I
Caltech Computer Science Technical Reports

.. CS-TR-88-12 $4.00 A Comparison of Strict and Non-strict Semantics for Lists, MS Thesis
Burch, Jerry R

. CS-TR-88-11 $5.00 A Study of Fine-Grain Programming Using Cantor, MS Thesis
Boden, Nanette J

.0CS-TR-88-10 $3.00 The Reactive Kernel, MS Thesis
Seizovic, Jacov

-CS-TR-88-07 $3.00 The Hexagonal Resistive Network and the Circular Approximation,
Feinstein, David I

.. CS-TR-88-06 $3.00 Theorems on Computations of Distributed Systems,
Chandy, K Mani

-CS-TR-88-05 $3.00 Submicron Systems Architecture I
ARPA Semiannual Technical Report

-CS-TR-88-04 $3.00 Cochlear Hydrodynamics Demystified
Lyou, Richard F and Carver A Mead

-CS-TR-88-03 $4.00 PS: Polygon Streams: A Distributed Architecture for Incremental Computation Applied to Graphics,
MS Thesis
Gupta, Rajiv

.CS-TR-88-02 $4.00 Automated Compilation of Concurrent Programs into Self-timed Circuits, MS Thesis

Burns, Stephen M

.. CS-TR-88-01 $3.00 C Programmer's Abbreviated Guide to Multicomputer Programming,
Seitz, Charles, Jakov Seisovic and Wen-King Sit

_5258:TR:88 $3.00 Submicron Systems Architecture
ARPA Semiannual Technical Report

_.5256:TR:87 $2.00 Synthesis Method for Self-timed VLSI Circuits,
Martin, Alain
current supply only: see Proc. ICCD'87: 1987 IEEE Int'l. Conf. on Computer Design, 224-229, Oct'87

__5253:TR:88 $2.00 Synthesis of Self- Timed Circuits by Program Transformation,
Burns, Steven M and Alain J Martin I

_5251:TR:87 $2.00 Conditional Knowledge as a Basis for Distributed Simulation,
Chandy, K. Mani and Jay Misra

_5250:TR:87 $10.OOImages, Numerical Analysis of Singularities and Shock Filters, PhD Thesis
Rudin, Leonid Iakov

_5249:TR:87 $6.00 Logic from Programming Language Semantics, PhD Thesis
Choo, Young-il

-5247:TR:87 $6.00 VLSI Concurrent Computation for Music Synthesis, PhD Thesis
Wawrzynek, John

__5246:TR:87 $3.00 Framework for Adaptive Routing
Ngai, John Y and Charles L. Seits

.5244:TR:87 $3.00 Multicomputers
Athas, William C and Charles L Seitz

-5243:TR:87 $5.00 Resource-Bounded Category and Measure in Exponential Complexity Classes, PhD Thesis

Lutz, Jack H I
_.5242:TR:87 $8.00 Fine Grain Concurrent Computations, PhD Thesis

Athas, William C.
-5241:TR:87 $3.00 VLSI Mesh Routing Systems, MS Thesis

Flaig, Charles M
.5240:TR:87 $2.00 Submicron Systems Architecture

ARPA Semiannual Technical Report

_5239:TR:87 $3.00 Trace Theory and Systolic Computations
Rem, Martin

-.. 5238:TR:87 $7.00 Incorporating Time in the New World of Computing System, MS Thesis

Poh, Hean Lee I

2 I

Caltech Computer Science Technical Reports

U 5236:TR:86 $4.00 Approach to Concurrent Semantics Using Complete Traces, MS Thesis
Van Horn, Kevin S.

-5235:TR:86 $4.00 Submicron Systems Architecture
* ARPA Semiannual Technical Report

5234:TR:86 $3.00 High Performance Implementation of Prolog
Newton, Michael 0

5233:TR:86 $3.00 Some Results on Kolmogorov-Chaitin Complexity, MS ThesisU Schweizer, David Lawrence
._5232:TR:86 $4.00 Cantor User Report

Athas, W.C. and C. L. Seitz
5230:TR:86 $24.00Monte Carlo Methods for £-D Compaction, PhD Thesis

U Mosteller, R.C.
.. 5229:TR:86 $4.00 anaLOG - A Functional Simulator for VLSI Neural Systems, MS Thesis

* Lazzaro, John
U 5228:TR:86 $3.00 On Performance of k-ary n-cube Interconection Networks,

Dally, Win. J
5227:TR:86 $18.00Parallel Execution Model for Logic Programming, PhD ThesisILi, Pey-yun Peggy

U.5223:TR:86 $15.OOIntegrated Optical Motion Detection, PhD Thesis
Tanner, John E.

5221:TRl:86 $3.00 Sync Model: A Parallel Execution Method for Logic Programming
Li, Pey-yun Peggy and Alain J. Martin
current supply only: see Proc SLP'86 3rd IEEE Symp on Logic Programming Sept '86

5220:TR:86 $4.00 Submicron Systems ArchitectureIARPA Semiannual Technical Report
.5215:TR:86 $2.00 How to Get a Large Natural Language System into a Personal Computer,

Thompson, Bozena H. and Frederick B. Thompson
5214:TR:86 $2.00 ASK is Transportable in Half a Dozen Ways,

Thompson, Bozena H. and Frederick B. Thompson
5212:TR:86 $2.00 On Seitz' Arbiter,

* Martin, Alain J
5210:TR:86 $2.00 Compiling Communicating Processes into Delay-Insensitive VLSI Circuits,

Martin, Alain
current supply only: see Distributed Computing v 1 no 4 (1986)

5207:TR:86 $2.00 Complete and Infinite Traces: A Descriptive Model of Computing Agents,
V van Horn, Kevin

.. 5205:TR:85 $2.00 Two Theorems on Time Bounded Kolmogrov-Chaitin Complexity,
* 5 Schweizer, David and Yaser Abu-Mostafa

k.5204:TR:85 $3.00 An Inverse Limit Construction of a Domain of Infinite Lists,
Choo, Young-Il

5202:TR:85 $15.00Submicron Systems Architecture,
ARPA Semiannual Technical Report

.15200:TR:85 $18.00ANIMAC: A Multiprocessor Architecture for Real-Time Computer Animation, PhD thesis
Whelan, Dan

__5198:TR:85 $8.00 Neural Networks, Pattern Recognition and Fingerprint Hallucination, PhD thesis
Mjolsness, Eric

.5197:TR:85 $7.00 Sequential Threshold Circuits, MS thesis
* Platt, John

5i95:TR:85 $3.00 New Generalization of Dekker's Algorithm for Mutual Exclusion,
Martin, Alain J
current supply only: see Information Processing Letters, 23, 295-297 (1986)

__5194:TR:85 $5.00 Sneptree - A Versatile Interconnection Network,
Li, Pey-yun Peggy and Alain J Martin

I3
I

I
Caltech Computer Science Technical Reports

__5193:TR:85 $2.00 Delay-insensitive Fair Arbiter I
Martin, Alain J

-5190:TR:85 $3.00 Concurrency Algebra and Petri Nets,

Choo, Young-il
__5189:TR:85 $10.O0Hicrarchical Composition of VLSI Circuits, PhD Thesis

- Whitney, Telle
.5185:TR:85 $11.OOCombining Computation with Geometry, PhD Thesis

Lien, Sheue-Ling
-5184:TR:85 $7.00 Placement of Communicating Processes on Multiprocessor Networks, MS Thesis

Steele, Craig
.5179:TR:85 $3.00 Sampling Deformed, Intersecting Surfaces with Quadirees, MS Thesis,Von Herzen, Brian P.

.5178:TR:85 $9.00 Submicron Systems Architecture,
ARPA Semiannual Technical Report

.. 5174:TR:85 $7.00 Balanced Cube: A Concurrent Data Structure,
Dally, William J and Charles L Seitz

-5172:TR:85 $6.00 Combined Logical and Functional Programming Language,
Newton, Michael I

. 5168:TR:84 $3.00 Object Oriented Architecture,
Dally, Bill and Jim Kajiya

-5165:TR:84 $4.00 Customizing One's Own Interface Using English as Primary Language,
Thompson, B H and Frederick B Thompson

-5164:TR:84 $13.00ASK French - A French Natural Language Syntax, MS Thesis
Sanouillet, Remy

.. 5160:TR:84 $7.00 Submicron Systems Architecture,
ARPA Semiannual Technical Report

_5158:TR:84 $6.00 VLSI Architecture for Sound Synthesis,
Wawrzynek, John and Carver Mead

_.5157:TR:84 $15.00Bit-Serial Reed-Solomon Decoders in VLSI, PhD Thesis
Whiting, Douglas

. 5147:TR:84 $4.00 Networks of Machines for Distributed Recursive Computations,
Martin, Alain and Jan van de Snepscheut

-5143:TR:84 $5.00 General Interconnect Problem, MS Thesis
Ngai, John

. 5140:TR:84 $5.00 Hierarchy of Graph Isomorphism Testing, MS Thesis 1
Chen, Wen-Chi

-5139:TR:84 $4.00 HEX: A Hierarchical Circuit Extractor, MS Thesis
Oyang, Yen-Jen

. 5137:TR:84 $7.00 Dialogue Designing Dialogue System, PhD Thesis
Ho, Tai-Ping

. 5136:TR:84 $5.00 Heterogeneous Data Base Access, PhD Thesis

Papachristidis, Alex I
-5135:TR:84 $7.00 Toward Concurrent Arithmetic, MS Thesis

Chiang, Chao-Lin
. 5134:TR:84 $2.00 Using Logic Programming for Compiling APL, MS Thesis

Derby, Howard
. 5133:TR:84 $13.00Hierarchical Timing Simulation Model for Digital Integrated Circuits and Systems, PhD Thesis

Lin, Tzu-mu
-5132:TR:84 $10.OOSwitch Level Fault Simulation of MOS Digital Circuits, MS Thesis

Schuster, Mike
. 5129:TR:84 $5.00 Design of the MOSAIC Processor, MS Thesis

Lutz, Chris II

4I

Caltech Computer Science Technical Reports

__5128:TM:84 $3.00 Linguistic Analysis of Natural Language Communication with Computers,
Thompson, Bozena H

5125:TR:84 $6.00 Supermesh, MS Thesis
Su, Wen-king

5123:TR:84 $14.00Mossim Simulation Engine Architecture and Design,
Dally, Bill

_5122:TR:84 $8.00 Submicron Systems Architecture,
ARPA Semiannual Technical Report

5114:TM:84 $3.00 ASK As Window to the World,
Thompson, Bozena, and Fred Thompson

__5112:TR:83 $22.OOParallel Machines for Computer Graphics, PhD Thesis
Ulner, Michael

.__5106:TM:83 $1.00 Ray Tracing Parametric Patches,
j Kajiya, James T

.5104:TR:83 $9.00 Graph Model and the Embedding of MOS Circuits, MS Thesis
Ng, Tak-Kwong

.5094:TR:83 $2.00 Stochastic Estimation of Channel Routing Track Demand,
Ngai, John

V 5092:TM:83 $2.00 Residue Arithmetic and VLSI,
Chiang, Chao-Lin and Lennart Johnsson

j..5091:TR:83 $2.00 Race Detection in MOS Circuits by Ternary Simulation,
V Bryant, Randal E

5090:TR:83 $9.00 Space-Time Algorithms: Semantics and Methodology, PhD Thesis
Chen, Marina Chien-mei

*.5089:TR:83 $10.OOSignal Delay in General RC Networks with Application to Timing Simulation of Digital
Integrated Circuits,
Lin, Tzu-Mu and Carver A Mead

*. _5086:TR:83 $4.00 VLSI Combinator Reduction Engine, MS Thesis
Athas, William C Jr

5082:TR:83 $10.O0Hardware Support for Advanced Data Management Systems, PhD Thesis
j Neches, Philip

1.5081:TR:83 $4.00 RTsim - A Register Transfer Simulator, MS Thesis
Lam, Jimmy
current supply only: see Acta Informatica 20, 301-313, (1983)

5074:TR:83 $10.OORobust Sentence Analysis and Habitability,
Trawick, David

5073:TR:83 $12.O0Automated Performance Optimization of Custom Integrated Circuits, PhD Thesis
j Trimberger, Steve
95. 065:TR:82 $3.00 Switch Level Model and Simulator for MOS Digital Systems,

Bryant, Randal E
5054:TM:82 $3.00 Introducing ASK, A Simple Knowledgeable System, Conf on App'l Natural Language Processing

Thompson, Bozena H and Frederick B Thompson
.. 5051:TM:82 $2.00 Knowledgeable Contezts for User Interaction, Proc Nat'l Computer Conference

Thompson, Bozena, Frederick B Thompson, and Tai-Ping Ho
fl--5035:TR:82 $9.00 Type Inference in a Declarationless, Object-Oriented Language, MS Thesis

Holstege, Eric
5034:TR:82 $12.OOHybrid Processing, PhD Thesis

Carroll, Chris
5033:TR:82 $4.00 MOSSIM II: A Switch-Level Simulator for MOS LSI User's Manual,

Schuster, Mike, Randal Bryant and Doug Whiting
5029:TM:82 $4.00 POOH User's Manual,F Whitney, Telle

U5
U'

I
Caltech Computer Science Technical Reports

. 5018:TM:82 $2.00 Filtering High Quality Tezt for Display on Raster Scan Devices, I
Kajiya, Jim and Mike Ulner

-5017:TM:82 $2.00 Ray Tracing Parametric Patches,
Kajiya, Jim I

.5015:TR:83 $15.00 VLSI Computational Structures Applied to Fingerprint Image Analysis,
Megdal, Barry

-5014:TR:82 $15.O0Extension of Object-Oriented Languages to a Homogencoas, Concurrent Architecture, PhD Thesis
Lang, Charles R Jr

.5012:TM:82 $2.00 Switch-Level Modeling of MOS Digital Circuits,
Bryant, Randal

. 5000:TR:82 $6.00 Self-Timed Chip Set for Multiprocessor Communication, MS Thesis
Whiting, Douglas

.4684:TR:82 $3.00 Characterization of Deadlock Free Resource Contentions,
Chen, Marina, Martin Rem, and Ronald Graham

__4655:TR:81 $20.OOProc Second Caltech Coan on VLSI,
Seitz, Charles, ed.

-3760:TR:80 $10.00 Tree Machine: A Highly Concurrent Computing Environmen4 PhD Thesis
Browning, Sally

-3759:TR:80 $10.OOHomogeneous Machine, PhD Thesis
Locanthi, Bart

.3710:TR:80 $10.00Understanding Hierarchical Design, PhD Thesis I
Rowson, James m

-3340:TR:79 $26.OOProc. Caltech Conference on VLSI (1979),
Seitz, Charles, ed

.2276:TM:78 $12.O0Language Processor and a Sample Language,I
Ayres, Ron

I
I
I
I
I
I
I
I

6 I
I

I
Caltech Computer Science Technical Reports

Ulease PRINT your name, address and amount encksed below:

tame

Iddress

Iity State Zip Country

mount enclosed $

S Please check here if you wish to be included on our mailing list

Please check here for any change of address

U Please check here if you would prefer to have future publications lists sent to your e-mail address.

-matl address

Return this form to: Computer Science Library, 256-80, Caltech, Pasadena CA 91125

89-11 8-03 _5223 -5164 _5089
89-10 88-02 -5221 -5160 -5086

-89-09 -88-01 5220 - 5158 _5082
89-07 - 5258 5215 - 5157 -5081

- 89-06 5256 - 5214 5147 5074
89-05 _5253 -5212 -5143 -5073

-89-04 .5251 -5210 _5140 _5065
- 89-03 5250 5207 _5139 _5054

89-02 -5249 55205 -5137 .5051
- 89-01 5247 - 5204 - 5136 - 5035

88-22 -5246 -5202 -5135 -5034
-88-21 -5244 --5200 -5134 _5033

- 88-20 5243 _5198 - 5133 - 5029
88-19 -5242 -5197 -5132 -5018

-88-18 5241 _5195 -5129 .5017
-88-17 -5240 . 5194 -5128 -5015
-88-16 -5239 - 5193 -5125 -5014

88-15 5238 -_5190 5123 - 5012
-88-14 -5236 -5189 5122 _5000

88-13 5235 - 5185 -5114 4684
-88-12 -5234 . 5184 -5112 -4655

_88-11 .5233 -.- ;-5179 .5106 - 3760
- 88-10 5232 - 5178 5104 -1759

88-07 -5230 - 5174 -5094 -3710
_88-06 5229 _5172 -5092 _3340
_88-05 -5228 -_5168 - 5091 _2276
_88-04 -5227 -5165 - 5090I

I
I
I

I SUBMICRON SYSTEMS ARCHITECTURE PROJECT
Department of Computer Science
California Institute of Technology

Pasadena, CA 91125

I
Semiannual Technical Report

[
I

Caltech Computer Science Technical Report

Caltech-CS-TR-89-4

31 March 1989I
I

The research described in this report was sponsored by the Defense Advanced Research
Projects Agency, DARPA Order number 6202, and monitored by the Office of Naval
Research under contract number N00014-87-K-0745.I

I

I
I

SUBMICRON SYSTEMS ARCHITECTURE

Semiannual Technical Report

Department of Computer Science

California Institute of Technology

Caltech-CS-TR-89-4

31 March 1989

I
I

I Reporting Period: 1 November 1988 - 31 March 1989

Principal Investigator: Charles L. Seitz

Faculty Investigators: K. Mani Chandy

Alain J. Martin

Charles L. Seitz

* Stephen Taylor

I
I

I Sponsored by the
Defense Advanced Research Projects Agency

DARPA Order Number 6202

Monitored by the
Office of Naval Research

Contract Number N00014-87-K-0745

I

SUBMICRON SYSTEMS ARCHITECTURE

Department of Computer Science
California Institute of Technology

1. Overview and Summary

1.1 Scope of this Report

This document is a summary of research activities and results for the five-month
period, 1 November 1988 to 31 March 1989, under the Defense Advanced Research
Project Agency (DARPA) Submicron Systems Architecture Project. Previous
semiannual technical reports and other technical reports covering parts of the
project in detail are listed following these summaries, and can be ordered from
the Caltech Computer Science Library.

1.2 Objectives

The central theme of this research is the architecture and design of VLSI
systems appropriate to a microcircuit technology scaled to submicron feature sizes.
Our work is focused on VLSI architecture experiments that involve the design,
construction, programming, and use of experimental message-passing concurrent
computers, and includes related efforts in concurrent computation and VLSI design.

1.3 Highlights

* Mosaic prototype approaching completion (2.1).

9 Delivery of 2nd-generation multicomputers (2.2)

* Programming with composition (3.3)

i First asynchronous microprocessor (4.1).

* Fast self-timed mesh routing chips (4.2).I
I
I
I
I -1-

I

2. Architecture Experiments

2.1 Mosaic Project

Chuck Seitz, Nanette J. Boden, Jordan Holt, Jakov Seizovic, Don Speck, Wen-King
Su, Steve Taylor, Tony Wittry

The Mosaic C is an experimental fine-grain multicomputer, currently in develop-
ment. Each Mosaic node is a single VLSI chip containing a 16-bit processor, a
three-dimensional mesh router with each of its channels operating at 160Mb/B, a .
packet interface, at least 8KB of RAM, and a ROM that holds self-test and boot-
strap code. These nodes are arrayed logically and physically in a three-dimensional
mesh. We are working toward building a 16K-node (32x32x 16) Mosaic prototype,
together with the system software and programming tools required to develop ap-
plication programs. I

The Mosaic can be programmed using the same reactive-process model that
is used for the medium-grain multicomputers that our group has developed.
However, the small memory in each node dictates that programs be formulated
with concurrent processes that are quite small. The Cantor programming system
supports this style of reactive-process programming by a combination of language,
compiler, and runtime support. The programmer is responsible only for expressing
the computing problem as a concurrent program. The resources of the target
concurrent machine are managed entirely by the programming system.

The Mosaic project includes many subtasks, which are listed below together
with their current status:

Design, layout, and verification of the single-chip Mosaic node. The
design and layout of the Mosaic C chip are now complete, and are going through

extensive switch-level simulation tests, including the simulation of multiple nodes I
(see section 4.3). We expect to send a memoryless version of the node element to
fabrication in about two weeks as a final check of the processor, packet interface,

and router sections. These chips will be connected to external RAM and ROM
to provide functional node elements for software development and host interfaces.
Fabrication of the first chips in 1.2Asm CMOS technology with RAM and ROM isi
anticipated in June 1989; quantity fabrication is anticipated in September 1989.

Internal self-test and bootstrap code. Since the Mosaic C is a
programmable computing element, devoting a portion of the bootstrap ROM to
self-testing greatly simplifies the logistics of producing these chips in significant
quantity. The bootstrap and self-test code has been designed and is currently being

written. The code will be tested using the ROM connected to the memoryless
Mosaic C elements. Additional tests to the channels, which must be accomplished
by the fabricator's automatic test equipment, are also being written.

Packaging. A preliminary packaging design based on TAB-packaged Mosaic

-2-

C chips was completed following a visit to Hewlett-Packard NID to understand
their TAB packaging capabilities. The manufacturing and replacement unit

contains eight nodes in a logical 2x2x2 submesh on a circuit-card module whose

physical dimensions are approximately 2.5x5inches2. These modules have stacking

connectors that provide 160 pins on both the top and bottom, and are confined by

pressure between motherboards to provide a three-dimensional connection structure
that can be disassembled and reassembled for repair.

Cantor runtime system. A complete Cantor runtime system was written in

Mosaic assembly code, and is now running correctly with a suite of small test
programs under a Mosaic simulator on our medium-grain multicomputers (see

section 3.1). This system provides the low-level implementation of message and

process-creation primitives, and normally will be loaded as part of the Mosaic

system initialization. The evolution of the Cantor programming language and the
experience gained by use are two factors that are expected to affect continuing
refinements to this system.

Cantor language, compiler, and application studies. A definition of a
version of Cantor (3.0) with functions and limited message discretion was proposed

in January 1989 by William C. Athas of UT Austin. We have been studying the
changes in the runtime support that will be required by these improvements. In the
interim, the definition and compiler implementation of Cantor 2.2 remain in use for
application development.

Host interfaces and displays. The three-dimensional mesh structure of the
Mosaic allows a very large bandwidth around the mesh edges. In order to initiate
and interact with computations within the Mosaic, we must provide interfaces
between the Mosaic message network and conventional computers and networks.
One approach being studied is to use a memoryless Mosaic with a two-ported

external memory as a convenient interface to workstation computers. Another
external connection that is desired is a display interface. An elegant method that
uses one 32 x 32 plane of a Mosaic as a rendering engine, frame buffer, and output

video-conversion system has been developed. The detailed design of the video
output generator that attaches to one edge of this 32x32 plane is now under way.

2.2 Second-Generation Medium-Grain Multicomputers*

Chuck Seitz, Joe Bechenbach, Christopher Lee, Jakov Seizovic, Craig Steele, Wen-

King Su

A 16-node Intel iPSC/2 was delivered in November 1988, and a 16-node Symult
Series 2010, a second-generation medium-grain multicomputer developed as a

* This segment of our reseaich is sponsored jointly by DARPA and by grants from

Intel Scientific Computers (Beaverton, Oregon) and Symult Systems (Monrovia,

California). -,

Ii

U

joint project between our research project and Symult Systems, Inc. (formerly P
Ametek Computer Research Division), was delivered in December 1988. Both of
these systems have been used extensively for programming system developments,
applications, and benchmarks. We have encountered very few system problems in
running existing Cosmic-C application programs on either the Symult Series 2010
or Intel iPSC/2.

Application programs typical of those that were written for first-generation
multicomputers run 8-10 times faster per node on the Symult Series 2010 and
on the Intel iPSC/2 than on first-generation machines, such as the Intel iPSC/1.
Applications involving latency-sensitive non-local message tiaffic exhibit more
dramatic improvements, particularly on the Series 2010, due to cut-through message 5
routing being included in the hardware of these second-generation multicomputers.

Delivery of a 64-node Series 2010 is expected on 31 March 1989, and our
16-node Series 2010 will be returned briefly to Symult to be upgraded to 32
nodes and retrofitted with some hardware improvements to the mesh termination
and host interfaces. The 32-node Series 2010 will continue as our principal n
programming-system-development machine. TiLe 64-node Series 2010 and the 16-
node iPSC/2 will be made available to ou •side users through the Caltech Concurrent
Supercomputing Facilities. Outside users will include researchers at Caltech, as well I
as those associated with the Rice-Caltech-Argonne-Los Alamos (NSF Science and
Technology) Center for Research in Parallel Computation. These systems will also
be available for use by researchers in the DARPA community; DARPA researchers I
should contact Chuck Seitz (chuck~vlsi. caltech. edu) to make arrangements for
access.

We expect to expand both the Intel iPSC/2 and Symult Series 2010 to larger
configurations by the early part of CY90.

Copies of the Cosmic Environment system have been distributed to 13 additional
sites during this period, bringing the total copies distributed directly from the
project to over 160. I

An effort has been started to implement major extensions of the Cosmic
Environment host runtime system and the Reactive Kernel node operating system.
The new CE will be based internally on reactive programming, and will allow a
more distributed management of a set of network-connected multicomputers. The
extended RK will support global operations across sets of cohort processes, including I
barrier synchronization, sum, min, max, parallel prefix, and rank. Another
extension will be the support of distributed data structures, such as sets and
ordered sets. These new features will be implemented at the RK handler level,
where the message latency is only a fraction of that at the protected user level. The
implementation of these algorithms at the handler level permits the performance of
global and distributed-data-structure operations in times that do not greatly exceed
those of user-level operations dealing with single messages.

-4- S~i

U Our Caltech project continues to work with both Intel and Symut on the
architectural design, message-routing methods and chips, and system software for
medium-grain multicomputers. We expect to see additional major advances in the
performance and programmability of these systems over the next two years. In
addition, we continue to develop applications in VLSI design and analysis tools, and
in other areas in which the programming of these multicomputer systems presents
particular difficulties or opportunities.

U 2.3 Cosmic Cube Project

Wen-King Su, Jakov Seizovic, Chuck Seitz

The Cosmic Cubes that were built in our project in 1983 and the Intel iPSC/1
d7 that was contributed to the project in 1985 continue to operate very reliably.
Overall usage has decreased somewhat with the appearance of the second-generation
multicomputers, but the iPSC/1 continues to be used fairly heavily within the
research group for discrete event simulations, and by Caltech students and faculty
in Aeronautics for supersonic-flow computations.

Neither the 64-node or 8-node Cosmic Cubes exhibited any hard failures in this
five-month period. The two original Ccsmic Cubes have now logged 3.8 million
node-hours with only four hard failures, three of which were chip failures in nodes,
and one a power-supply failure. A node MTBF in excess of 1,000,000 hours is
probable based on this reliability experience.

I
I5

I

I
3. Concurrent Computation I

3.1 Cantor

Nanette J. Boden, Chuck Seitz

Programming Fine-Grain Multicomputers

The experiments we reported previously in application programming using Can-
tor 2.0 and 2.2 have suggested a series of changes to the Cantor language.
William C. Athas, who led the development of Cantor while he was a graduate

student and post-doc in the project, and who is now at UT Austin, has incorpo- I
rated these ideas into the definition of a new version of Cantor (3.0). The principal
structural changes are the introduction of limited discretion in receiving messages
according to type, and in the approach to implementing functions. I

In developing the Cantor programming system for the Mosaic, we mean to allow
for these changes so that we may change to Cantor 3.0 as soon as a new compiler
is produced.

Cantor for the Mosaic I
Development of Cantor runtime support for the Mosaic multicomputer has
progressed significantly during the last five months. Initially, we defined a Cantor
Abstract Machine (CAM) that represents an idealized machine for executing Cantor
code. The CAM instruction set includes single instructions that encapsulate
complicated Cantor operations, such as process creation and message passing.
By design, the implementation of these operations can be varied within native
code generators for experimenting with different strategies. With the Mosaic, for
example, we use a macro-assembler that translates the implementation for each
CAM instruction into Mosaic instructions.

The definition of the first version of the Cantor runtime system for the Mosaic
consisted chiefly of freezing efficient implementations for process creation and
message passing, and expressing them with Mosaic instructions. In the case of
process creation, a software cache of available reference values is maintained on
each node so that processes can be created with low latency. These reference
values are later bound to actual processes by special creator processes located on
each node that allocate memory for new processes. Receiving a message on the
Mosaic is implemented by having the runtime system determine the destination

process, and then run that process to absorb the message. The runtime system also I
communicates with the runtime systems on other nodes to manage resources within
the node, eg, sending requests for more reference values to fill the software cache.

To evaluate different runtime system prototypes, we developed a Mosaic
simulator that runs on existing medium-grain multicomputers, including the Cosmic

-6-

I

1

U Cubes, Intel iPSCs, and the Symult 2010. A host program distributes the Mosaic
code for a Cantor program to each simulated Mosaic node, and initiates computation
by instantiating the main process of the Cantor program. Program output is
achieved by instantiating a console process and passing its reference in messages.

Currently, our simulator is working on a test suite of simple Cantor programs.
In the future, we plan to incorporate some of the more recent Cantor innovations,
eg, functions and limited message discretion, into the simulator and into the runtime
system. We ar. also planning experiments to evaluate different strategies for code
distribution and memory allocation throughout Mosaic nodes.

I 3.2 Concurrent Logic Programming

Stephen Taylor

A commercially supported concurrent logic programming system was ported to our
Symult Series 2010 multicomputer, and is available for all users of our project's
multicomputers.

This system is composed of a compiler for the language Strand, and an
environment for program development. The language provides an abstract message-
passing framework for use in a variety of symbolic and system integration tasks.
The system is also operational on Intel iPSC systems, networks of Suns, Mecho
Transputer surfaces, PC Plug-in Transputer cards, Encore/Sequent shared memory

machines, BBN Butterfly, and Atari personal machines. The system was used for a
graduate course in compiler techniques this quarter, and will be used in a graduate

'I course on concurrent programming in this coming quarter. It is also being used to
study various applications in the composition research described in the following
section of this report. Finally, a textbook describing the ideas embodied in the
Strand system was recently completed, and will be published by Prentice-Hall in
July 1989.

U 3.3 Programming with Composition

Mani Chandy, Stephen Taylor

We are interested in developing a notation for specifying concurrent algorithms and
programs. Our goals are to support formal reasoning about program correctness

and to provide efficient implementations of symbolic, numeric, and operating system
codes. We have chosen program composition as a central notion due to its prevalence
in both semantic models and program design methodologies.

During the past six months, we have considered the basic components of such a
notation. Our conclusion is that there are four composition operators of importance.
These operators are defined on program units; the method by which these units
are implemented is relatively unimportant. It is natural to expect the notation
to allow existing codes (written in Fortran, C, Lisp, Ada, etc) to be reused on

-7-I

multicomputers. Moreover, the composition of these units will have a formal
semantic characterization. To explore the utility of the notation, we are currently
focussing on the hand compilation of non-trivial application codes. If performance
results indicate that the notation is sufficiently efficient, we plan to build a compiler I
targeted to multicomputer architectures.

In the area of numeric computing we are studying a large fluid-flow problem
developed in the department of Applied Mathematics at Caltech. This Fortran
application computes the transition from a two-dimensional Taylor Vortex to three-
dimensional wavy-vortex flow. Central to the application is a relaxation algorithm
that employs a multigrid method. After benchmarking, we discovered that more
than 70% of the execution time for the application was spent in the relaxation
algorithm; thus, we decided to focus on this algorithm. Unfortunately, we arrived at
a somewhat negative conclusion: The original algorithm was based on a sequential
line-iteration scheme that afforded no opportunity for concurrent execution. As I
a result, we have converted the original code to use a point Gaussian relaxation

algorithm; this appears more suitable. We are currently in the process of debugging
a concurrent formulation of the algorithm. I

In the area of symbolic computing we are studying a large automated reasoning
program in conjunction with the Aerospace Corporation in Los Angeles. ThisI
program has been used extensively for checking the correctness of hardware
specifications and Ada programs. A central component of the program is a
congruence closure algorithm used for maintaining equality assertions. We began I
this research by investigating the opportunities for executing portions of this
algorithm concurrently. This, again, led us to a somewhat negative conclusion:
The granularity of typical invocations of the algorithm is too low to benefit from I
concurrent execution. We are now investigating a new algorithm that overlaps the
execution of multiple equality assertions. Since a large number of these occur in a
typical proof, we believe this to be a more suitable direction.

Finally, we are also interested in working with DNA sequencing programs, but
have not yet made substantial progress in this area.

It should be understood that the objective of these application efforts is to
test the utility of the program-composition notation, rather than to develop the
applications themselves.

3.4 Variants of the Chandy-Misra-Bryant Distributed Discrete-Event I
Simulation Algorithm

Wen-King Su, Chuck Seitz

During the past five months, additional simulations using the new logic simulator
have been made, and a revision of the paper "Variants of the Chandy-Misra-Bryant

Distributed Discrete-event Simulation Algorithm" (included as an appendix to this
report) was written for publication in the 1989 SCS Eastern Multi-Conference. A

-8-

I

Stest verzion of the hybrid simulator has been implemented on top of the concurrent
CMB variant simulators. Results from this prelimiary investigation are promising,3 and a new, more efficient version of the hybrid simulator is currently being written.

* 3.5 Distributed Snapshots

Mani Chandy

One of the fundamental problems in distributed systems appears trivial: Record the
state of the system. The problem is, however, quite difficult because distributed
systems do not have a single system-wide clock. If there were a clock, all processes
could record their local states at a predetermined time. The problem of recording
global states of distributed systems is at the core of a large number of problems
in distributed systems, including deadlock detection, termination detection, and
resource management. The paper, "The Essence of Distributed Snapshots,"
submitted to the ACM Transactions on Computer Systems, and included as an
appendix to this report, presents necessary and sufficient conditions for a collection
of local snapshots (recordings of local states) to be a global snapshot. The paper
shows that many distributed algorithms can be developed in a systematic and
straightforward manner from these conditions.

I
I
I
I
I
I
I
I
I

I

I

4. VLSI Design I

4.1 The Design of the First Asynchronous Microprocessor

Alain J. Martin, Steven M. Burns, T. K. Lee, Drazen Barkovic, Pieter J. Hazewin-
dus

We have completed the design of an entirely asynchronous (self-timed, delay-
insensitive) microprocessor. It is a 16-bit, RISC-like architecture with independent

instruction and data memories. It has 16 registers, 4 buses, an ALU, and two adders. I
The size is about 20,000 transistors. Two versions have been fabricated: one in 211m
MOSIS SCMOS, and one in 1.6gm MOSIS SCMOS. (On the 2gim version, only 12
registers were implemented in order to fit the chip into the 84-pin 6600gimx46001im
pad frame.)

With the exception of isochronic forks (see the paper included as an appendix 3
to this report), the chips are entirely delay-insensitive, ie, their correct operation
is independent of any assumption on delays in operators and wires except that the

delays be finite. The circuits use neither clocks nor knowledge about delays.

The only exception to the design method is the interface with the memories. In
the absence of available memories with self-timed interfaces, we have simulated the I
completion signal from the memories with an external delay. For testing purposes,

the delay on the instruction memory interface is variable.

In spite of the presence of several floating n-wells, the 2Am version runs at
12 MIPS. The 1.6Am version runs at 18 MIPS. (Those performance figures are
based on measurements from sequences of ALU instructions without carry. They
do not take advantage of the overlap between ALU and memory instructions.) Those
performance results are quite encouraging given that the design is very conservative:

It uses static gates, dual-rail encoding of data, completion trees, etc. I
Only two of the 12 2gm chips passed all tests, but 34 out of the 50 1.6gm chips

were found to be entirely functional. However, within a certain range of values
for the instruction memory delay, the 1.6gzm version is not entirely functional. We
cannot) explain this phenomenon.

We have tested the chips under a wide range of VDD voltage values. At room
temperature, the 2Arm version is functional in a voltage range from 7V down to
0.35V! And it reaches 15 MIPS at 7V. We have also tested the chips cooled in liquid

nitrogen. The 2gm version reaches 20 MIPS at 5V and 30 MIPS at 12V. The 1.6grm
version reaches 30 MIPS at 5V. Of course, these measurements are made without

adjusting any clocks (there are none), but simply by connecting the processor to a
memory containing a test program and observing the rate of instruction execution.
The results are summarized in Figure 1. The power consumption is 145mW at 5V,

and 6.7mW at 2V. Figure 2 shows that the optimal power-delay product is obtained I
at 2V at room temperature.

-10- I

I

U 30

I 20

i 15 -300*K, 2Am
p 1

10

I 5

0 0

0 2 4 j8 10 12

* Volts

Figure 1: MIPS as a function of VDD

I 10

I 8
E
nIe 6

I A4
p

* 2

0 1 2 3 4 5 6 7

* Volts

Figure 2: Power-delay product as a function of VDD

4.2 Fast Self-Timed Mesh Routing Chips

Chuck Seitz

The latest mesh-routing-chip (MRC) design, the FMRC2.1 design, was sent to
MOSIS for 1.6Am SCMOS fabrication on 7 November 1988. This chip is a revision of
FMlRC2.0 that corrects a timing error in the latching of a routing decision. A Spice I
simulation indicated that that the revision corrected a timing error of approximately
0.7ns to a timing margin of about 1.0ns (about 50% of the difference between two
short delay paths; hence, not as risky as it may sound). The maximal throughput
predicted both by Spice and by tau-model calculations was 60MB/s.

These chips were returned from fabrication on 10 January 1989, and were
found to operate correctly under a nearly exhaustive functional screening, and at
a maximum throughput of 56MB/s. The yield on this run was 44/50. One of the
chips had a cracked package, and two had bonding shorts; hence, the fabrication
yield was actually 44/47.

Batches of 20 good chips were sent both to Intel Scientific Computers (as GFE
on their DARPA contract) and to Symult Systems, and both companies have verified
that these chips operate correctly in their test fixtures or systems.

The FMRC2.1 chip employs a design method that is not entirely delay-
insensitive (see previous section). The circuit exhibits races within modules,
but these modules have self-timed interfaces to other modules. Previous MRCs, I
entirely pin-for-pin compatible, employed the same delay-insensitive style as the
asynchronous processor reported in the previous section, and required nearly twice
the silicon area to operate half as fast as the FMRC2.1. I

Hence, we conjecture that we shall see the same phenomenon with self-timed
designs that is apparent with conventional designs; namely, that chips with relativelyI
few cell types, such as memories and MRCs, will profitably employ circuit-level
optimizations. Such optimizations are relatively less profitable and manageable in
more complex chip designs, such as processors. I
4.3 Mosaic C Chip

Jakov Seizovic, Jordan Holt, Chuck Seitz, Don Speck, Wen-King Su, Tony Wittry

During the past few months, work on the Mosaic chip has predominantly consisted of I
a series of extensive switch-level simulations. Using COSMOS instead of MOSSIM,
we were able to decrease the simulation time by a factor of ten, with a negligible
additional cost in setup (compile) time. The simulation of a memoryless version I
of Mosaic chip, consisting of about 26K transistors, takes slightly over a second of
real time per clock cycle when running on a SUN 3/260. This has enabled us to

simulate fairly long sequences of instructions from the Cantor runtime system at
the switch-simulation level. p

-12-

Having completed simulations of all of the logic parts of the Mosaic chip,
ie, processor, packet interface, router, and bus arbiter, independently as well as
together, we are entering the final phase of switch-level simulations, where multiple
Mosaic chips will be represented as processes under CE/RK, and run on the
multicomputers operated by the project, as well as on workstations.

We are planning to send the first version of a Mosaic chip to fabrication on a
2t& MOSIS run within a couple of weeks.

4.4 New CMOS PLAs

Jakov Seizovic, Chuck Seitz

A NOR-NOR precharged PLA has been designed to replace the NAND-NOR
precharged PLA that we have used extensively since 1985. Both the delay and
precharge time of this NOR-NOR PLA are linear in the number of inputs, a
significant improvement compared to the NAND-NOR PLA, in which the delay is
quadratic, and precharge time is cubic. This PLA has replaced the two NAND-NOR
PLAs in the Mosaic C packet interface and the hybrid static/precharge NAND-NOR
PLA in the Mosaic processor, and accordingly has saved us a lot of time and trouble
in the Mosaic design.

4.5 CIF-flogger

Glenn Lewis, Chuck Seitz

CIF-flogger is a multicomputer program for flattening CIF files, rasterizing the
geometry, and performing parallel operations on the geometry in strips. It runs

under the CE/RK system, and hence, on most available multicomputers, including
the Intel iPSC/2 and Symult Series 2010.

CIF-flogger currently supports the following operations on the chip geometry:

e parsing the CIF specification file (produced by Magic)

9 flattening and rasterizing the hierarchical design geometry

* recognizing transistor geometry

3 global connected-component labeling

e bloat, shrink, and logical mask layer operations

* creating new CIF for a processed design

Plans for CIF-flogger include:

U general CIF-reading capability

3 circuit extraction

-13-

I
* well-plug checking 5
* design-rule checking

Initial timings indicate that CIF-flogger provides these operations in a matter of a

few seconds for 10OK-transistor chips. CIF-flogger is intended to be a useful tool
for chip designers and foundries to verify that a design passes "syntactical" checks I
before it is fabricated, thus saving both time and money.

4.6 Adaptive Routing in Multicomputer Networks I
John Y. Ngai, Chuck Seitz

As we are wrapping up our theoretical investigation of multicomputer adaptive

routing, our recent efforts have been concentrated in two areas:

(1) The first of a series of publications will appear in the 1989 ACM Symposium I
on Parallel Algorithms and Architectures, to be held in Sante Fe, New Mexico
this June. (A copy of this paper is included at the end of the report.)

(2) We have been searching for practical implementation ideas for replacing the
existing oblivious router in the Mosaic with an adaptive router. A low-latency
header encoding and modification scheme that we have dubbed the "sign-
first one-shy code" has been devised for an adaptive router with a relatively
narrow flit width. The details of these implementation ideas can be found in a 5
forthcoming PhD thesis.

1
!
I
I
I
I
I

-14- I

I

California Institute of Technology
Computer Science Department, 256-80

Pasadena CA 91125

Technical Reports
28 March 1989

Prices include postage and help to defray our printing and mailing costs.

Publication Order Form
jo order reports fill out the last page of this publication form. Prepayment is required for all materials. Purchase orders will not

accepted. AlU foreign orders must be paid by international money order or by check drawn on a U.S. bank in U.S. currency,
ayable to CALTECH.

.CS-TR-89-03 $3.00 Feature-oriented Image Enhancement with Shock Filters, I
Rudin, Leonid I with Stanley Osher

.. CS-TR-89-02 $3.00 Design of an Asynchronous Microprocessor,
* Martin, Alain J

.CS-TR-89-01 $4.00 Programming in VLSI From Communicating Processes to Delay-insensitive Circuits,
Martin, Alain J

CS-TR-88-22 $2.00 Variants of the Chandy-Misra-Bryant Distributed Discrete-Event Simulation Algorithm,
Su, Wen-King and Charles L Seitz

_CS-TR-88-21 $3.00 Winner-Take-All Networks of O(N) Complexity,
Lazzaro, John, with S Ryckebusch, M A Mahowald and C A Mead

_.CS-TR-88-20 $7.00 Neural Network Design and the Complexity of Learning,
V Judd, J. Stephen

____CS-TR-88-19 $5.00 Controlling Rigid Bodies with Dynamic Constraints,
* Barzel, Ronen

.C S-TR-88-18 $3.00 Submicron Systems Architecture Project,
ARPA Semiannual Technical Report

CS-TR-88-17 $3.00 Constrained Differential Optimization for Neural Networks,
SPlatt, John C and Alan H Barr

*.CS-TR-88-16 $3.00 Programming Parallel Computers,
Chandy, K Mani

CS-TR-88-15 $13.00 Applications of Surface Networks to Sampling Problems in Computer Graphics, PhD Thesis
Von Herzen, Brian

.. CS-TR-88-14 $2.00 Syntax-directed Translation of Concurrent Programs into Self-timed Circuits
Burns, Steven M and Alain J Martin

BCS-TR-88-13 $2.00 A Message-Passing Model for Highly Concurrent Computation,
V- Martin, Alain J

.- CS-TR-88-12 $4.00 A Comparison of Strict and Non-strict Semantics for Lists, MS Thesis
* C Burch, Jerry R
L CS-TR-88-11 $5.00 A Study of Fine-Grain Programming Using Cantor, MS Thesis

Boden, Nanette J
SC-TR-88-10 $3.00 The Reactive Kernel, MS Thesis

Seizovic, Jacov
--_.._CS-TR-88-07 $3.00 The Hexagonal Resistive Network and the Circular Approximation,

Feinstein, David I
CS-TR-88-06 $3.00 Theorems on Computations of Distributed Systems,

Chandy, K Mani
._-CS-TR-88-05 $3.00 Submicron Systems Architecture

* ARPA Semiannual Technical Report
U. CS-TR-88-04 $3.00 Cochlear Hydrodynamics Demystified

Lyon, Richard F and Carver A Mead

U

I
Caltech Computer Science Technical Reports

0CS-TR-88-03 $4.00 PS: Polygon Streams: A Distributed Architecture for Incremental Computation Applied to Graphics,
MS Thesis
Gupta, Rajiv

_._CS-TR-88-02 $4.00 Automatid Compilation of Concurrent Program. into Self-timed Oircuits, MS Thesis
Steven M Burns

-CS-TR-88-01 $3.00 C Programmer's Abbreviated Guide to Multicomputer Programming,
Seits, Charles, Jakov Seizovic and Wen-King Su

-5258:TR:88 $3.00 Submicron Systems Architecture I
ARPA Semiannual Technical Report

-5256:TR:87 $2.00 Synthesis Method for Self-timed VLSI Circuits,
Martin, Alain
current supply only: see Proc. ICCD'87: 1987 IEEE Int'l. Conf. on Computer Design, 224-229, Oct'81

..5253:TR:88 $2.00 Synthesis of Self-Timed Circuits by Program Transformation,
Burns, Steven M and Alain J Martin

... 5251:TF.:87 $2.00 Conditional Knowledge as a Basis for Distributed Simulation,
Chandy, K. Mani and Jay Misra

.5250:TR:87 $10.00 Images, Numerical Analysis of Singularities and Shock Filters, PhD Thesis
Rudin, Leonid Iakov

____5249:TR:87 $6.00 Logic from Programming Language Semantics, PhD Thesis

Choo, Young-il
-5247:TR:87 $6.00 VLSI Concurrent Computation for Music Synthesis, PhD Thesis

Wawrzynek, John

-5246:TR:87 $3.00 Framework for Adaptive Routing
Ngai, John Y and Charles L. Seitz

-5244:TR:87 $3.00 Multicomputers I
Athas, William C and Charles L Seitz

.5243:TR:87 $5.00 Resource-Bounded Category and Measure in Exponential Complexity Classes, PhD Thesis
Lutz, Jack H I

____5242:TR:87 $8.00 Fine Grain Concurrent Computations, PhD Thesis

Athas, William C.
_._5241:TR:87 $3.00 VLSI Mesh Routing System., MS Thesis

Flaig, Charles M
-5240:TR:87 $2.00 Submicron Systems Architecture

ARPA Semiannual Technical Report
__..-5239:TR:87 $3.00 Trace Theory and Systolic Computations I

Rem, Martin
-5238:TR:87 $7.00 Incorporating Time in the New World of Computing System, MS Thesis

Poh, Hean Lee

.... 5236:TR:86 $4.00 Approach to Concurrent Semantics Using Complete Traces, MS Thesis
Van Horn, Kevin S.

.____5235:TR:86 $4.00 Submicron System. Architecture

ARPA Semiannual Technical Report I
_._5234:TR:86 $3.00 High Performance Implementation of Prolog

Newton, Michael 0
-. 5233:TR:86 $3.00 Some Results on Kolmogorov-Chaitin Complexity, MS Thesis I

Schweizer, David Lawrence

_...._5232:TR:86 $4.00 Cantor User Report
Athas, W.C. and C. L. Seitz

-5230:TR:86 $24.00 Monte Carlo Methods for B-D Compaction, PhD Thesis
Mosteller, R.C.

-. 5229:TR:86 $4.00 anaLOG - A Functional Simulator for VLSI Neural Systems, MS Thesis
Lazzaro, John

2 I

I
I Caltech Computer Science Technical Reports

5228:TR:86 $3.00 On Performance of k-ary n-cube Interconection Networks,
Dally, Win.

.5227:TR:86 $18.00 Parallel Execution Model for Logic Programming, PhD Thesis
*P Li, Pey-yun Peggy

.5223:TR:86 $15.00 Integrated Optical Motion Detection, PhD Thesis
U Tanner, John E.
* 221:TR:86 $3.00 Sync Model: A Parallel Execution Method for Logic Programming

Li, Pey-yun Peggy and Alain J. Martin
current supply only: see Proc SLP'86 3rd IEEE Symp on Logic Programming Sept '86

1-5220:TR:86 $4.00 Submicron Systems Architecture
ARPA Semiannual Technical Report

.5215:TR:86 $2.00 How to Get a Large Natural Language System into a Personal Computer,
* Thompson, Bozena H. and Frederick B. Thompson
UL 214:TR:86 $2.00 ASK is Transportable in Half a Dozen Ways,

Thompson, Bozena H. and Frederick B. Thompson
5212:TR:86 $2.00 On Seitz' Arbiter,

Martin, Alain J
-- 5210:TR:86 $2.00 Compiling Communicating Processes into Delay-Insensitive VLSI Circuits,

Martin, Alain
current supply only: see Distributed Computing v 1 no 4 (1986)

1 5207:TR:86 $2.00 Complete and Infinite Traces: A Descriptive Model of Com.puting Agents,
van Horn, Kevin

5205:TR:85 $2.00 Two Theorems on Time Bounded Kolmogrov-Chaitin Complexity,
Schweizer, David and Yaser Abu-Mostafa

_.5204:TR:85 $3.00 An Inverse Limit Construction of a Domain of Infinite Lists,
Choo, Young-il

5202:TR:85 $15.00 Submicron Systems Architecture,
U ARPA Semiannual Technical Report
.. 5200:TR:85 $18.00 ANIMAC: A Multiprocessor Architecture for Real-Time Computer Animation, PhD thesis
* Whelan, Dan
U 198:TR:85 $8.00 Neural Networks, Pattern Recognition and Fingerprint Hallucination, PhD thesis

Mjolsness, Eric
5197:TR:85 $7.00 Sequential Threshold Circuits, MS thesisI Platt, John

.__5195:TR:85 $3.00 New Generalization of Dekker's Algorithm for Mutual Exclusion,
Martin, Alain J
current supply only: see Information Processing Letters, 23, 295-297 (1986)

5194:TR:85 $5.00 Sneptree - A Versatile Interconnection Network,
Li, Pey-yun Peggy and Alain J Martin

5193:TR:85 $2.00 Delay-insensitive Fair Arbiter
Martin, Alain J

___.190:TR:85 $3.00 Concurrency Algebra and Petri Nets,
Choo, Young-il

__5189:TR:85 $10.00 Hierarchical Composition of VLSI Circuits, PhD Thesis
Whitney, Telle

____5185:TR:85 $11.00 Combining Computation with Geometry, PhD Thesis
* Lien, Sheue-Ling
f.5184:TR:85 $7.00 Placement of Communicating Processes on Multiprocessor Networks, MS Thesis

Steele, Craig
5179:TR:85 $3.00 Sampling Deformed, Intersecting Surfaces with Quadtrees, MS Thesis,

- Von Herzen, Brian P.
._.5178:TR:85 $9.00 Submicron Systems Architecture,

ARPA Semiannual Technical Report

3

I
Caltech Computer Science Technical Reports

-5174:TR:85 $7.00 Balanced Cube: A Concurrent Data Structure, I
Dally, William J and Charles L Seits

... _...5172:TR:85 $6.00 Combined Logical and Functional Progmmming Language,
Newton, Michael

_._5168:TR:84 $3.00 Object Oriented Architecture,
Dally, Bill and Jim Kajiya

.5165:TR:84 $4.00 Customizing One's Own Interface Using English as Primary Language,
Thompson, B H and Frederick B Thompson I

____5164:TR:84 $13.00 ASK French - A French Natural Language Syntax, MS Thesis
Sanouillet, Remy

. 5160:TR:84 $7.00 Submicron Systems Architecture,
ARPA Semiannual Technical Report

____5158:TR:84 $6.00 VLSI Architecture for Sound Synthesis,
Wawrzynek, John and Carver Mead

.......5157:TR:84 $15.00 Bit-Serial Reed-Solomon Decoders in VLSI, PhD Thesis
Whiting, Douglas

-5147:TR:84 $4.00 Networks of Machines for Distributed Recursive Computations,
Martin, Alain and Jan van de Snepscheut

.5143:TR:84 $5.00 General Interconnect Problem, MS Thesis
Ngai, John

.. 5140:TR:84 $5.00 Hierarchy of Graph Isomorphism Testing, MS Thesis
Chen, Wen-Chi

.5139:TR:84 $4.00 HEX: A Hierarchical Circuit Extractor, MS Thesis
Oyang, Yen-Jen

_ 5137:TR:84 $7.00 Dialogue Designing Dialogue System, PhD Thesis
Ho, Tai-Ping

. 5136:TR:84 $5.00 Heterogeneous Data Base Access, PhD Thesis
Papachristidis, Alex I

5135:TR:84 $7.00 Toward Concurrent Arithmetic, MS Thesis

Chiang, Chao-Lin
.___5134:TR:84 $2.00 Using Logic Programming for Compiling APL, MS Thesis

Derby, Howard
-5133:TR:84 $13.00 Hierarchical Timing Simulation Model for Digital Integrated Circuits and Systems, PhD Thesis

Lin, Tzu-mu
-5132:TR:84 $10.00 Switch Level Fault Simulation of MOS Digital Circuits, MS Thesis

Schuster, Mike
-5129:TR:84 $5.00 Design of the MOSAIC Processor, MS Thesis

Lutz, Chris I
.... _.5128:TM:84 $3.00 Linguistic Analysis of Natural Language Communication with Computers,

Thompson, Bozena H
__5125:TR:84 $6.00 Supermesh, MS Thesis

Su, Wen-king
_ 5123:TR:84 $14.00 Mossim Simulation Engine Architecture and Design,

Daily, Bill
_5122:TR:84 $8.00 Submicron Systems Architecture,

ARPA Semiannual Technical Report

-... 5114:TM:84 $3.00 ASK As Window to the World,
Thompson, Bosena, and Fred Thompson I

. 5112:TR:83 $22.00 Parallel Machines for Computer Graphics, PhD Thesis
Ulner, Michael

.5106:TM:83 $1.00 Ray Tracing Parametric Patches,

Kajiya, James T

41 I

I
Caltech Computer Science Technical Reports

5104:TR:83 $9.00 Graph Model and the Embedding of MOS Circuits, MS Thesis
Ng, Tak-Kwong

._094:TR:83 $2.00 Stochastic Estimation of ChanneltRouting Track Demand,
*P Ngai, John
.. ____5092:TM:83 $2.00 Residue Arithmetic and VLSI,
* Chiang, Chao-Lin and Lennart Johnsson
V 091:TR:83 $2.00 Race Detection in MOS Circuits by Ternary Simulation,

Bryant, Randal E
5090:TR:83 $9.00 Space-Time Algorithms: Semantics and Methodology, PhD Thesis

Chen, Marina Chien-mei
a..5089:TR:83 $10.00 Signal Delay in General RC Networks with Application to Timing Simulation of Digital

Integrated Circuits,
* Lin, Tzu-Mu and Carver A Mead

5086:TR:83 $4.00 VLSI Combinator Reduction Engine, MS Thesis
Athas, William C Jr

5082:TR:83 $10.00 Hardware Support for Advanced Data Management Systems, PhD Thesis
Neches, Philip

.. .5081:TR:83 $4.00 RTsim - A Register Transfer Simulator, MS Thesis
Lam, Jimmy
current supply only: see Aeta Informatica 20, 301-313, (1983)

__.5074:TR:83 $10.00 Robust Sentence Analysis and Habitability,
Trawick, David

S073:TR:83 $12.00 Automated Performance Optimization of Custom Integrated Circuits, PhD Thesis

V Trimberger, Steve
... __5065:TR:82 $3.00 Switch Level Model and Simulator for MOS Digital Systems,

Bryant, Randal E
5054:TM:82 $3.00 Introducing ASK, A Simple Knowledgeable System, Conf on App'l Natural Language Processing

Thompson, Bozena H and Frederick B Thompson
-5051:TM:82 $2.00 Knowledgeable Contexts for User Interaction, Proc Nat'l Computer Conference

* Thompson, Bozena, Frederick B Thompson, and Tai-Ping Ho
* 035:TR:82 $9.00 Type Inference in a Declarationless, Object-Oriented Language, MS Thesis

Holstege, Eric
-- 5034:TR:82 $12.00 Hybrid Processing, PhD Thesis

Carroll, Chris
--.. 5033:TR:82 $4.00 MOSSIM II: A Switch-Level Simulator for MOS LSI User's Manual,

Schuster, Mike, Randal Bryant and Doug Whiting
S029:TM:82 $4.00 POOH User's Manual,

Whitney, Telle

5018:TM:82 $2.00 Filtering High Quality Text for Display on Raster Scan Devices,
* 5 Kajiya, Jim and Mike Ullner

I.5017:TM:82 $2.00 Ray Tracing Parametric Patches,
Kajiya, Jim

5015:TR:82 $15.00 VLSI Computational Structures Applied to Fingerprint Image Analysis,
SMegdal, Barry

.5014:TR:82 $15.00 Extension of Object-Oriented Languages to a Homogeneous, Concurre,.t Architecture, PhD Thesis
Lang, Charles R Jr

5012:TM:82 $2.00 Switch-Level Modeling of MOS Digital Circuits,
Bryant, Randal

.. 5000:TR:82 $6.00 Self-Timed Chip Set for Multiprocessor Communication, MS Thesis
- Whiting, Douglas
1-4684:TR:82 $3.00 Characterization of Deadlock Free Resource Contentions,

Chen, Marina, Martin Rem, and Ronald Gr 'Nam

I
!5

I ~ ~ mUl n mU m un mu

I
Caltech Computer Science Technical Reports

.___4655:TR:81 $20.00 Proc Second Caltech Conf on VLSI,
Seits, Charles, ed.

___.37•0:TR:80 $10.00 Tree Machine: A Highly Concurrent Computing Environment, PhD Thesis
Browning, Sally I

-3759:TR:80 $10.00 Homogeneous Machine, PhD Thesis
Locanthi, Bart

-..... 3710:TR:80 $10.00 Understanding Hierarchical Design, PhD Thesis
Rowson, James I

._.__3340:TR:79 $26.00 Proc. Caltech Conference on VLSI (1979),

Seits, Charles, ed
.2276:TM:78 $12.00 Language Processor and a Sample Language, IAyres, Ron

6I

I
I
I
I
Ii
I
I
I
I
I
I

I:

Caltech Computer Science Technical Reports

!L PRINT your name, address and amount enclosed below:

I.s
State Zip Country

mount enclosed $

L Please check here if you wish to be included on our mailing list

Please check here for any change of address

- Please check here if you would prefer to have future publications lists sent to your e-mail address.

ail addres

ieturn this form to: Computer Science Library, 256-80, Caltech, Pasadena CA 91125

89-03 -5250 -5210 5143 - 5074

89-02 .5249 5207 - 5140 _5073

89-01 -5247 5205 -5139 -5065

88-22 -5246 -5204 -5137 -5054

-88-21 -5244 .5202 -5136 -5051

-88-20 -5243 5200 - 5135 -5035

88-19 -5242 5198 5134 -5034

-88-18 ,5241 5197 5133 _5033

88-17 -5240 _ 5195 -5132 -5029

-88-16 - 5239 -5194 -5129 -5018

-88-15 -5238 I5193 -5128 -5017

88-14 -5236 . 5190 -5125 -5015

-88-13 -5235 -5189 -5123 -5014

88-12 -5234 -5185 -5122 -5012

- 88-11 -5233 -5184 A5114 _5000

-88-10 -5232 . 5179 -5112 4684

88-07 -5230 -5178 -5106 4655

-88-06 5229 - 5174 -5104 -3760

88-05 -5228 -5172 -5094 -3759

-. 88-04 5227 - 5168 -5092 -3710

-88-03 5223 - 5165 -5091 -3340

88-01 -5221 -5164 -5090 '2276

-5258 15220 -5160 -5089

-5256 -5215 -5158 -5086

-5253 5214 - 5157 -5082

5 251 5212 - 5147 -5081

1

The Design of an
Asynchronous Microprocessor

Alain J. Martin, Steven M. Burns, T.K. Lee,
Drazen Borkovic, Pieter J. Hazewindus

California Institute of Technology
Pasadena CA 91125, USA

to appear in Proc. Decennial Caltech Conference on VLSI, 20-22
March, 1989, MIT Press
Caltech-CS-TR-89-2

1 1 Introduction

Prejudices are as tenacious in science and engineering as in any other
human activity. One of the most firmly held prejudices in digital VLSI
design is that asynchronous circuits-a.k.a. self-timed or delay-insen-
sitive circuits-are necessarily slow and wasteful in area and logic.
Whereas asynchronous techniques would be appropriate for control,
they would be inadequate for data paths because of the cost of dual-rail
encoding of data, the cost of generating completion signals for write
operations on registers, and the difficulty of designing self-timed buses.

Because a general-purpose microprocessor contains a complex dataI path, a corollary of the previous opinion is that it is impossible
to design an efficient asynchronous microprocessor. Since we have
been developing a design method for asynchronous circuits that gives
excellent results, and since the above objections to large-scale data
path designs are genuine but untested, we decided to "pick up the

Sgauntlet" and design a com plete processor.
The design of an asynchronous microprocessor poses new chal-

lenges and opens new avenues to the computer architect. Hence, the
experiment unavoidably developed a dual purpose: We are refining an
already well-tested design method, and we are starting a new series of
experiments in asynchronous architectures. (As far as we know, this is
the first entirely asynchronous microprocessor ever built.) The results
we are reporting have a difTerent implication depending on whether
they are related to the first or second goal of the experiment. Whereas
we are convinced that our design methods have reached maturity, we
are quite aware that asynchronous techniques may influence the com-
puter architects in completely new ways that this first design is just
starting to explore.

I1

I

I
In order to focus the experiment on asynchronous circuit design,

we have intentionally excluded optimizations at the high and low ends I
of the design process. The instruction set is straightforward and no
assumption has been made on the code produced by the compiler.
No special electrical optimizations other than transistor sizing have
been applied; the circuit techniques rarely go beyond those taught in

a graduate-level VLSI class, and, apart from the memory interfaces,
the circuits are delay-in8enusitive. Hence, any performance is to be
attributed to the design method and to the inherent advantages of
asynchronous design.

A circuit is delay-insensitive when its correct operation is

* independent of any assumption on delays in operators and wires
except that the delays be finite. Such circuits do not use a clock
signal or knowledge about delays: Sequencing is enforced entirely by
communication mechanisms.

The class of entirely delay-insensitive circuits is very limited.
Different asynchronous techniques distinguish themselves in the
choice of the compromises to delay-insensitivity. Speed-independent' I
techniques assume that delays in gates are arbitrary, but there are no

delays in wires. Self-timed Lechniques assume that a circuit can be
decomposed into equipotential regions inside which delays in wires are
negligible[11].

In our method, certain local forks are introduced to distribute a=5
variable as inputs of several gates. We assume that the difference
between the delays in the branches of such forks are short compared
to delays in other gates. We call such forks isochronic[6], [8]. I

The general method-a complete description of which can be found
in the referenced papers [2], [5], [6], [7], [8--is based on program
transformations. The circuit is first designed as a set of concurrent
programs. Each program is then compiled (manually or automatically)
into a circuit by applying a series of program transformations. Control
and data path are first designed separately and then combined in a
mechanical way. This important divide-and-conquer technique is a
main innovation of the method.

2 Preliminary Results I
As of this writing, the first design is complete, and has been scheduled
for fabrication in 2um MOSIS SCMOS. The chip was functionally

simulated using COSMOS [1], and was found to be functionally correct.

2 I

I

I The architecture is a 16-bit processor with offset and a simple
instruction set of the RISC type [4]. The data path contains twelve
16-bit registers, four buses, an ALU, and two adders. The chip contains
20,000 transistors and fits within a SSW.\ by 3500A area. We are
using an 84-pin 66001im x 4600jum frame. An estimate of the critical
path suggests processor performance of approximately 15MIPS in 2;Lm
SCMOS. (A slightly improved 1.6Mum SCMOS version is also being
fabricated.)

This experiment, the most challenging one we have conducted so
far, promised to be an important test for our method. The results
obt:.ined so far have been very encouraging.

The technique for separating control and data path has been
extended with a novel asynchronous bus design, and is now robust
and general.

The handshaking protocol between circuit elements has also been
modified so that half of a protocol sequence overlaps subsequent
actions. This protocol makes it possible to "hide" half of delays of the
completion trees, the tree of gates that combine the completion signals
from the asynchronous elements. In addition, at most two completion
trees are in sequence on any path. Thus, completion tree delays are

* not a serious disadvantage of asynchronous design.
* Instruction pipelining has been approached as a concurrent

programming problem: Starting with a sequential program for the
processor, concurrency is introduced through a series of program
transformations. However, although the transformations are guided by
the intent to overlap the important phases-fetch, decode, execute--of
instruction execution, they are neither mechanical nor unique. The
designer decides how to decompose a program into several concurrent
ones. We do not claim that our solution in this first design is in any
way optimal.

* 3 Specification of the Processor as a
Sequential Pro ram

The instruction set is deliberately not innovative. It is a conven-
tional 16-bit-word instruction set of the load-atore type. The pro-
cessor uses two separate memories for instructions and data. There
are three types of instructions: ALU, memory, and program-counter
(pc). All ALU instructions operate on registers; memory instruc-
tions involve a register and a data memory word. Certain instruc-
tions use the following word as offset. (See Table 1 in Appendix 2.)

3I

I
1

*[FETCH: i, pc:- imem~ppc + 1; I
(offset(i.op) - offet,pC := imempI, p•C + I;

1;
EXECUTE: (a-u('op) (regfi.zj, f) := aluf (reg[li.x, reg[i.y], i.op, If)

Ild(i.op) -, regji.zJ := dmemregli.zJ + regli.y]]

Ilt(i.op) --4 dmemjreg(i.zj + regi.yll := regli.z]

Ildz(i.op) - reg[i.zJ := dmem(offset + reg~i.y]

Istz(i.op) -- dmem[offaet + reg[i.yll := reg[i.z]

Ilda(i.op) - regi.zl : offset + regfi.yj

It*p(i.op) -- ,egli.z] := pc

Ijmp(i.op) - pc:= reg[i.y1

Ibreh(i.op) -. [cond(f, i.cc) -- pc := pc + offset

Icond(fi.cc) - -skip

I I

I
Figure 1: Sequential progpam describing the processor

The only important omissions, those of an interrupt mechanism and I
communication ports, are ones we found to be unnecessary distractions
in a first design. 1I

The sequential program describing the processor is a non-
terminating loop, each step of which is a FETCH phase followed by an
EXECUTE phase. The complete sequential program for the processor
is shown in Figure 1. (The notation, which is an extension of the one
we have used in previous work, is described in Appendix 1.) Variable
i, which contains the instruction currently being executed, is described
in the PASCAL record notation as a structured variable consisting of

4

I several fields. All instructions contain an op field for the opcode. The
parameter fields depend on the types of the instructions, which are
found in Table 2 in Appendix 2. The most common ones, th6se for
ALU, load, and store instructions, consist of the three parameters, x,
y, and z. Variable cc contains the condition code field of the branch
instruction, and f contains the flags generated by the execution of an
alu instruction.

The two memories are the arrays imem and dmem. The index
to imem is the program-counter variable, pc. The general-purpose
registers are described as the array reg[O... 151. (Only twelve regisk-is

Sare implemented in the first chip.) Register reg[0] is special: It always
contains the value zero.

i| 4 Decomposition into Concurrent Processes

We decompose the previous program into a set of concurrent processes
that communicate and synchronize using communication commands on
channels. A restricted form of shared variables is allowed. The control
channels Xs, Ys, ZAs, Z W8, ZR., and the bus ZA are one-to-many; the
buses X, Y, ZMare many-to-many; the other channels are one-to-one.3 But all channels are used by only two processes at a time. The
structure of processes and channels is shown in Figure 2. The final

i program is shown in Figures 3 and 4.

ID FETCH -EEXEC ACF_
IC ____ ___ ..

io " Zs MDI

I I___ ______

Y~bus t t • .•

"I ~ZMbu, s t ,

PCADD REGISTERS ALU MU

Figure 2: Process and channel structure

5

IMEM =-*jID!imemjpcjj
FETCH *[PCI1; ID?i; PCI2;U

[offset (i.op) --+ PCI1; ID?off~et; PC125

I-offeet(i.op) --. ekip

1; E1!i; E25

PCADD a(*[[PC-I1 -+ PCI1; y: pc + 1; PC12; pc: y

I PCA 1 --t PCA1; y :=pc+ offset; PCA2;pc y

lx-x X!pc * Xpc

fY- Y?pc.0Ypc

IIII[XoJ-f X!offeet * Xof)J

EXEC a*[E1?i;

[alu(i.op) --4 E2; Xe * Ye * AC!i.op o ZA.

Dld(i.op) -4E2; Xe & Ye * MCI * ZR.

flst(i.op) -*E2; Xe * Ye * MC2 * ZWe

flldx(i.op) -. Xof 9 Ye * MCI * ZR.; E2

Ietx(i.op) -Xof * Ye * MC2 * ZWs; E2

j~da(i.op) -~Xof * Ye 9 MC3 e ZR.; E2

Oet pc(i-op) -. Xpc 9 Ye * ACladd * ZAe; E2
fljmp(i.op) -*Ypc * Ye; E2I

lbrch(i.op) .F?f ; Icond(f, i.ce) -+ PCA1; PCA2

9-cond(f,i.cc) --+ -skipI

1;E23

Figure 3: The final program, first part

6I

I
I

ALU *-[[AC --+ AC?op * X?z e Y?y;

(zIf) := aluf (x, y, op, f); ZA!z

MU *[[•M1 - X?z * Y?y * MCI; ma:= z + y; MDI?w; ZM!w

IMCS - X?z Y?Y MC2 * ZM?w; ma:= z + Y; MDs!w

IM-F,' X?z Y?y e MC3; ma:= z + Y; ZM!ma

DMEM- MD!dmem,[ma

I •s -- MDsUr.dmemmal

11
REG(k] (*[[-ibk A k = i. ^A Xs- X!r * XaI]

II*H-,bk A k = i.y A To - Y!r * YJ]J

11,11-,bk A k = i.z A 7Ws -. ZM!r *ZWsJ]

IlI.[-,bk A k = i.z A ZAi -- bk T; ZA8; ZA?r; bk 1]]

lII*[[-,bk A k = i.z A Mai -- bk T; ZRa; ZM?r; bk 111

I)

Figure 4: The final program, second part

Process FETCH fetches the instructions from the instruction
memory, and transmits them to process EXEC which decodes them.
Process PCADD updates the address pc of the next instruction
concurrently with the instruction fetch, and controls the offset register.
The execution of an ALU instruction by process ALUcan overlap with
the execution of a memory instruction by process MU. The jump and
branch instructions are executed by EXEC; store-pc is executed by
the ALU as the instruction "add the content of register r to the pc
and store it." The array REG[k] of processes implements the register
file. Both MU and PCADD contain their own adder. Processes
IMEM and DMEMdescribe the instruction memory and data memory,
respectively.

7I

I
I

Updating the PC

The variable pc is updated by process PCADD, and is used by IMEM
as the inde*of the array imem during the ID communication-the
instruction fetch.

The assignment pc := pc+lI is decomposed into y := pc+l; pc := y,
where y is a local variable of PCADD. The overlap of the instruction

fetch, ID? (either ID?i or ID?offeet), and the pc increment, y := I
pc + 1, can now occur while pc is constant. Action ID? is enclosed
between the two communication actions PCI1 and PCIR, as follows: 1

PCI1; ID?i; PCI2 .

In PCADD, y := pc + 1 is enclosed between the same two P
communication actions while the updating of pc follows PCI.6

PCIJ --+ PCII; y := pc + 1; PCI2; pc := y.

Since the completions of PCI1 and PCIS in FETCH coincide with the 5
completion of PCI1 and PCIR in PCADD, respectively, the execution
of ID?i in FETCH overlaps the execution of y := pc + 1 in PCADD.
PCI1 and PCI2 are implemented as the two halves of the same
communication handshaking to minimize the overhead.

In order to concentrate all increments of pc inside PCADD, we 5
use the same technique to delegate the assignment pc := pc + offset
(executed by the EXEC part in the sequential program) to PCADD.

The guarded command X-7 -- Xof!offaet in PCADD has been I
transformed into a concurrent process since it needs only be mutually
exclusive with assignment y := z + offset, and this mutual exclusion
is enforced by the sequencing between PCA1; PCA2 and Xof within
EXEC.

5 Stalling the Pipeline

When the pc is modified by EXEC as part of the execution of a pc
instruction, (store-pc, jump or branch), fetching the next instruction
by FETCH is postponed until the correct value of the pc is assigned I
to PCADD.pc.

When the offset is reserved for MU by EXEC, as part of the

execution of some memory instructions, fetching the next instruction,
which might be a new offset, is postponed until MU has received the

8

I
I

value of the current offset. In the second design, we have refined the
protocol to block FETCH only when the next instruction is a new
offset.

Postponing the start of the next cycle in FETCH is achieved by
postponing the completion of the previous cycle, i.e., by postponing
the completion of the communication action on channel E. As in
the case of the PCI communication, E is decomposed into two
communications, El and E2. Again, El and E2 are implemented
as the two halves of the same handshaking protocol.

In FETCH, EUi is replaced with E!i; E2. In EXEC, E2 is
postponed until after either Xofoffset or a complete execution of a
pc instruction has occurred.

6 Sharing Registers and Buses

A bus is used by two processes at a time, one of which is a register and
the other is EXEC, MU, ALU, or PCADD. We therefore decided to
introduce enough buses so as not to restrict the concurrent access to
different registers. For instance, ALU writing a result into a register
should not prevent MU from using another register at the same time.

The four buses correspond to the four main concurrent activities
involving the registers.

The X bus and the Y bus are used to send the parameters of an
ALU operation to the ALU, and to send the parameters of address
calculation to the memory unit. We also make opportunistic use of
them to transmit the pc and the offset to and from PCADD.

The ZA bus is used to transmit the result, of an ALU operation
to the registers. The ZM bus is. used by the memory unit to transmit
data between the data memory and the registers.

We make a virtue out of necessity by turning the restriction
that registers can be accessed only through those four buses into a
convenient abstraction mechanism. The ALU uses only the X, Y, and

SZA ports without having to reference the particular registers that are
used in the communications. It is the task of EXEC to reserve the X,
Y, and ZA bus for the proper registers before the ALU uses them.

The same holds for the MU process, which references only X, Y,
and ZM. An additional abstraction is that the X bus is used to send
the offset to MU, so that the cases for which the first parameter is i.z
or offset are now identical, since both parameters are sent via the X
bus.

9I

Exclusive Use of a Bus

Commands XpC, YpC, and Xof are used by EXEC to select the X and

Y buses for communication of pc and offset. Commands Xs, Ys, and
ZAs are used by EXEC to select the X, Y, and ZA buses, respectively, I
for a register that has to communicate with the ALU as part of the
execution of an ALU instruction.

Two commands are needed to select the ZM bus: ZWa if the bus I
is to be used for writing to the data memory, and ZRs if the bus is to
be used for reading from the data memory.

Let us first solve the problem of the mutual exclusion among the
different uses of a bus. As long as we have only one ALU and one
memory unit, no conflict is possible on the ZA and ZM buses, since I
only the ALU uses the ZA bus, and only the memory unit uses the
ZM bus. But the X and Y buses are used concurrently by the ALU,
the memory unit, and the pc unit.

We achieve mutual exclusion on different uses of the X bus as

follows. (The same argument holds for Y.) The completion of an X
communication is made to coincide with the completion of one of the
selection actions Xs, Xof, Xpc; and the occurrences of these selection
actions exclude each other in time inside EXEC since they appear in
different guarded commands.

This coincidence is implemented by the bullet (9) command : For i
arbitrary communication commands U and V inside the same process,
U 9 V guarantees that the two actions are completed at the same
time. We then say that the two actions coincide. The use of the I
bullets X!pc 9 Xpc and X!offset * Xof inside PCADD , and X!r * Xe
inside the registers enforce the coinidence of X with XPC, Xof, and
Xs, respectively. The bullets in EXEC, ALU, and MU have been
introduced for reasons of efficiency: Sequencing is avoided.

7 Register Selection

Command Xe in EXEC selects the X bus for the particular register
whose index k is equal to the field i.z of the instruction i being decoded

by EXEC, and analogously for commands Ys, ZAs, ZRs, arid ZWs.
Each register process REG[k], for 0 < k < 16, consists of five

elementary processes, one for each selection command. The register

that is selected by command Xs is the one that passes the test k = i.z. I
This implementation requires that the variable i.z be shared by all

10 I
I

registers and EXEC. An alternative solution that does not require
shared variables uses demultiplexer processes. (The implementations
of the two solutions are almost identical.)

The semicolons in the last two guarded commands of REG[k]
are introduced to pipeline the computation of the result of an ALU
instruction or memory instruction with the decoding of the next
instruction.

Mutual Exclusion on Registers

A register may be used 'i several arguments (z, y, or z) of the same
instruction, and also as an argument in two successive insitructions
whose executions may overlap. We therefore have to address the issue
of the concurrent uses of the same register. Two concurrent actions on
the same register are allowed when they are both read actions.

Concurrency within an instruction is not a problem: X and Y
communications on the same register may overlap, since they are both
read actions, and Z cannot overlap with either X or Y because of the
sequencing inside ALU and MU.

Concurrency in the access to a register during two consecutive
overlapping instructions (one instruction is an ALU and the other is a
memory instruction) can be a problem: Writing a result into a register
(a ZA or a ZR action) in the first instruction can overlap with another
action on the same register in the second instruction. But, because the
selection of the z register for the first instruction takes place before
the selection of the registers for the second instruction, we can use this
ordering to impose the same ordering on the different accesses to the
same register when a ZA or ZR is involved.

This ordering is implemented as follows: In REGjkI, variable bk
(initially false) is set to true before the register is selected for ZA or
ZR, and it is set back to false only after the reg;ster has been actually
used. All uses of the register are guarded with the condition -bk.
Hence, all subsequent selections of the register are postponed until the
current ZA or ZR is completed.

We must -ensure that bk is not set to true before the register is
selected for an X or a Y action inside the aame instruction, since
this would lead to deadlock. We omit this refinement which does not
appear in the program of Figures 3 and 4.

11

8 Implementation p
Control Part

The control part of a process is obtained 'y the following transforma-
tions: First, each communication command involving message input
or output is replaced with a "bare" communication on the channel; for !
instance, C?z and C!x would both be replaced with C.

Second, all assignmnent statements are delegated to subprocesses.
Assignment S is replaced with a communication command on a new
channel, say Cs, and the subprocess *[[G-U- -, S * Ca]] is introduced.
After these transformations, the control part of each process consists !
only of boolean expressions in conditionals and of communication

commands. Thus, the next step is to implement each commun: cation
command with a handshaking protocol.

Handshaking Protocols

Consider the matching pair of actions X!u and X?v in processes A
and B respectively. We first implement the bare communication on
channel X. The channel is implemented by the two handshake wires I
(zo -t yi) and (yo v# zi) as indicated oa Figure 5.(a). As usual, we
use a four-phase, or t'return-to-zero" handshaking protocol. Such a
protocol is not symmetrical: All communications in one process are
implemented as active and all communications in the othei process aspassive.

We have shown in [7] and (81 that the implementation of an input
action is significantly simpler when combined with an active protocol
than with a passive one. Therefore all input actions are implemented I
as active and all output actions as passive. (In the case of output, the
implementation of communication is the same for active and passive
protocols.)

The standard active and passive implementations are:
[yii;yo T; [-yil; yo I (passive)

"XoT;ixil;Xo.1.;--'Xi] (active) . I

(The passive protocol starts with the wait action lyi], i.e., "wait until
the input wire is set to true." The active protocol starts with zoT, 1
i.e., "set the output wire to true.")

I112

I

I
I

We introduce an alternative active implementation, called lazy
activie:

I-,xil;xoT;[xil; oxI (lazy active)

The lazy active protocol differs from the active one in that the
last wait action [-,zij is postponed until the beginning of the next
communication. The difference is important when data communication
is involved.

I (a)

Iyi Xo

A B
YO Xi

I t

I (b)

I Figure 5: Implementation or communication

I ~Figure &.(b) shows how the data path is combined with the control.I The bits of the communication channel between the two registers (the
"data wires") are dual-rail encoded. Wire (yojgxi) is "cut open," yto is

I used to assigned the values of the bits of u to the dual-rail data wires,

and xi is set to true when all bits of v have been set to the values of
I the data wires. Each cell of a register contains an acknowledge wire1 that is set to true when the bit of the cell has been set to a valid value

of the two data wires, and reset to false when the data wires are both

I3

I:

I
reset to false. Let vackj be the acknowledge of bit vi, xi is set and i
reset as:

vack0 A vacki ... A vack1 - zi Ti
-,Vack 0 A -,vack, ... A -,vackjs •-i

Since a 16-input C-element would be prohibitively slow to implement,
the implementation is a tree of smaller C-elements, which we call a
completion tree. Figure 5.(b) shows a tree of binary C-elements. In

the actual processor, we use a two-level tree of 4-input C-elements. I
When data is transmitted via a bus, and when the completion

tree is large, the gain of using a lazy-active protocol can be very
important, since half of the data transmission delays and half of the
completion-tree delays can overlap with the rest of the computation.
Therefore, all input actions are implemented as lazy active.

The case when data is transmitted from process A to process

B via a bus is only slightly more complicated. No arbitration is
necessary: A and B are allowed to communicate via a bus only after I
the bus has been reserved for these two processes. The chief problem
in implementing the buses is the distributed implementation of large
multi-input OR-gates.

The lazy-active protocol cannot be used when an input action
is probed--such as action AC?op in the ALU-because the probe
requires a passive protocol. For those cases, we have designed a special
protocol that requires two control wires.

9 ALU

ALU control

In the ALU process, variable z is not needed to store the result of an
ALU operation: the result can be put directly on the ZA bus. The
first guarded command of the ALU process can be rewritten: n

A-C -.- AC?opo X?x oY?y; (ZA, f) := alu(z,y, op,f). n

Hence, the control part is simply:

*[;• - AC.o X.o Y; ALF3

14I
111 I,

(The assignment to f is omitted.) Communication command AL
is the call of the subprocess evaluating a/uf. The handshaking protocol
of AL is passive because it includes an output action on the ZA bus:
[aliJ; aloT; [-,alij; alo 1. Hence, ao T is the "go" signal for the ALU
computation proper.

The first guarded command has the structure of a canonical stage
of the pipeline. Parameters are simultaneously received on a set of
ports, and the result is sent on another port as in:

*[L?x; R!f(z)].I
Such a process is called a buffer. Since L is implemented as lazy active,
and R as passive, it is a lazy-active/poasive buffer. In the second
design, where we have decomposed both the ALU and the memory
processes into two processes in order to improve the pipeline, each
stage of the pipeline is a lazy-active/passive buffer.

ii ALU data path

The output Z of the subprocess is dual-rail encoded. When the
subprocess is called, variables z, y, and op have stable and valid
values. Moreover, the content of op has been encoded in a KPG ("kill,
propagate, generate") form which is used to produce the carry-out for
each bit, and also for the result. The length of the carry chain is
"variable, which is an advantage in a fully asynchronous execution.

Since the carry-out of each bit is inverted relative to the carry-in,
we alternate the logic encoding of the stages in the carry chain: A
carry-in that has a true value when high generates a carry-out that has
a true value when low, and vice-versa for the next stage. With this
coding, only one CMOS grte delay is incurred per stage. Although
the acknowledge from the ZA bus is used as completion signal, a
completion tree is needed at the output of the subprocess for the
computation of the flags.

The elapsed time between the activation of the ALU subprocess
by a/o T and the appearance of the results on the output Z depends
on the number of stages in the carry chain. Add, substract, and other
logical functions typically take between 13 and 25ns in 2j*m SCMOS.

I
15I'

FETCH EXEC ALU I

9I I

I"IMEM DECODE OPERAND COMPUTE

Figure 6: Abstract Pipeline for ALU Instructions i

10 Performance

In this processor, an instruction is executed in a varying amount of
time, depending in part on the type of instruction and the values of its
operands, and on the sequence surrounding the instruction. Because
of this data dependence, an analysis of the "real" performance of the
processor, i.e., the performance of the processor when executing "real"
programs, is quite complex and most probably must be determined by
simulation. The performance analysis can be simplified by assuming an
infinite sequence of identical instructions with typical operand values. I
(The results obtained through this analysis do not include the potential

benefits of interleaving ALU and memory instructions.) Here, we
analyze the performance of the processor executing an infinite sequence
of ALU instructions.

In this case, the processor can be viewed as the three-stage pipeline i
shown in Figure 6. By assuming the ALU operations are performed
on distinct registers, the register locking mechanism need not be
introduced and the control for the EXEC process and the ALUprocess I
reduces to lazy-active/passive buffers. The fetch process is complicated
by the increment of the pc, but if the instruction memory is assumed to 5
be slower than the increment, control for this process also reduces to a
lazy-active/passive buffet. By first assuming negligible control delays
compared with datapath delays (denoted 6D and 6-.D for the upgoing I
and downgoing propagation delays of datapath unit D, respectively),

16

I

I

I the cycle time, cp, of each process P is determined by the datapath
delays that must be sequenced. A lazy-active/passive buffer sequences
only the upgoing transitions of the two datapath units and, separately,
the upgoing and downgoing transitions of the individual units,
resulting in cycle time max(6DI + 6O1,, 6DI + 6,D1, 6O2 + 6-&)O

Since each process in the pipeline is a lazy-active/passive buffer,
and since the throughput of the pipeline is determined by the slowest
prces cpa~cm = max(b. + 6d, 6M + 6-., bd + 6-d)* process:

CZxsc = max(6f + 6o, 6 + 6 -41, 6fi + 6.)
CALc = max(6o + 6., + 6., 6, + 6_1)

CPROC = max(cprcH, CXXZC, CAWC) •

I Timing simulations suggest that the dominant constraints are the
memory and decode sequence in the FETCH process (6,, + 64), and
the operand and compute sequence in the ALU process (6. + 6,). For
the 2 pm SCMOS processor, the delays introduced by the control parts
increase the cycle time by 10 to 20na, bringing the cycle time for an
infinite stream of ALU instructions up to max(35ns + 6m,65ns). We
expect the processor to achieve 15 MIPS if the access delay of the
instruction memory (6.,) is no longer than 30ns.

11 Correctness by Construction and CAD Tools

I Since the method is based on semantics-preserving program transfor-
mations, the object code generated by the compilation procedure is

* correct by construction.
The object code is a set of potentially concurrent production rules

that are constructs of the form BI '-4 z T or B2 ,--, z x, where B1 and
B2 are mutually exclusive boolean expressions, and z T and z I stand
for "set z to true" and "set z to false," respectively. The compilation
procedure guarantees the absence of hazards by ensuring that the
conditions BE and B2 are stable, i.e., if B1 is true, it remains true
until z as been set to true.

If the production rules of the object code can be matched with
the production rules that describe the standard cells of a cell library,
a standard-cell-layout program can be used to generate a layout
corresponding to the object code. We have been using such a standard
cell approach in our previous designs, and indeed all chips fabricated
in this way have been found to be functional on "first silicon."

However, most of the processor was designed manually. First,
since the control section introduces significant overhead, we decided to

I
17I

I
I

compile its object code manually. Second, because the data path was
expected to be the critical part with respect to size and because of the
difficulty of adjusting the pitch of the different registers automatically,
the automatic layout program was used for the control part but not
for the data path. This decision was later justified by the fact that,
whereas the data path was hardly changed after the first design,
the control part went through a series of drastic modifications. We
observed that, again, our method for separating control and data path
permitted us to implement completely different pipelines by changing
the control without significant alterations of the data path. I

As usual, the disadvantage of manual compilation was that the

design was not shielded from clerical errors at which humans excel.
While the difficult optimization problem that is at the core of a

high-performance processor design is probably still beyond automatic
compilation technology, the designer should be assisted with CAD tools i
that perform the mechanical translation steps. Other CAD tools that
we found useful include a program that estimates the critical path of
a circuit. The program, which was developed by Steve Burns, gives
excellent results. It estimates the delays of each path by a simulation
of the execution based on the production rules.

Magic was used for the manual layout [10].

12 Conclusion I
Although the chips are still in fabrication, we are very satisfied with
the preliminary results of the experiment.

First, the chip layout is obviously not large. The control is
surprisingly small despite our use of an automatic layout tool; also, U
the anticipated nightmare of data path layout did not materialize.
The register pitch is 80, which is quite reasonable given that four
buses have to be placed.

Second, the predicted performance is quite remarkable, given that
the experiment is a first in two ways: It is our first experience as
computer architects, and it is the first asynchronous microprocessor
ever built.

Third, the complete design took five persons (one joined in theI
middle of the project) five months.

Since the choice of an instruction set was not part of the
experiment, our design should be judged in two ways: the choice
of the concurrent program of Figure 3, and its implementation.

18

I

The implementation is satisfactory, but not optimal. The sizing of
transistors can be improved and the number of transitions can be
decreased, mainly by a better placement of inverters. For instance,
the delays due to a completion tree and to the control for a buffer are
both about twice their theoretical minimum.

The program of Figure 3 represents the choice of a pipeline, and
of synchronization techniques to implement it. We have deliberately
chosen a simple pipeline. In particular, the mechanism for stalling,
which places part of the decoding in series with the fetch on the
critical path, sacrifices efficiency for simplicity. However, performance
evaluations show that the pipeline is well-balanced since the different
stages have comparable average delays. Improving the critical path by
overlapping fetch and decode requires improving the ALU and memory
instruction execution stages by pipelining parts of these stages.

The practicality of overlapping ALU and memory instruction
executions remains an open issue. It is not clear whether the gain in
performance is worth the complexity of the synchronization involved
and the requirement of two separate Z buses.

We find the synchronization techniques used to implement the
concurrent activities between the different stages of the pipeline
particularly elegant and efficicnt, since the delays incurred in a
synchronization can be of arbitrary length and vary from instruction

* to instruction.
We foresee excellent performances for asynchronous processors

as the feature size keeps decreasing. But the designer must be
ready to learn and apply new design methods based on concurrent
programmming, that are required to exploit asynchronous techniques

* to their fullest.

* Acknowledgment

We are indebted to Bill Athas and Bill Dally for useful discussions in
the preliminary stage of the design. Chuck Seitz, Nanette Boden, and
Dian De Sha made excellent comments on the manuscript. The first
author enjoyed numerous discussions with Chuck Seitz on the general
topic of asynchronous design.
The research described in this paper was sponsored by the Defense
Advanced Research Projects Agency, DARPA Order numbers 3771 &
6202, and monitored by the Office of Naval Research under contract
numbers N00014-79-C-0597 & N00014-87-K-0745.

19

I

'I

References I
(11 R.E. Bryant, D. Beatty, K.'Brace, K. Cho, and T. Sheffier.

COSMOS: A Compiled Simulator for MOS Circuits. In 24th
Design Automation Conference, pp.9-16. ACM and IEEE, 1987.

[2] Steven M. Burns and Alain J. Martin, Syntax-directed Translation I
of Concurrent Programs into Self-timed Circuits. In J. Allen and
F. Leighton (ed), Fifth MIT Conference on Advanced Research in I
VLSI, pp 35-40, MIT Press, 1988.

[3] C.A.R. Hoare, Communicating Sequential Processes. Comm.
ACM 21,8, pp 666-677, August, 1978. I

[4] Mark Horowitz et al., MIPS-X: A 20-MIPS Peak, 32-bit Micro-
processor with On-Chip Cache. IEEE Journal of Solid-State
Circ uit,SC-22(5) :790-799,October, 1987.

[5] Alain J. Martin, The Design of a Self-timed Circuit for Distributed
Mutual Exclusion. In Henry Fuchs (ed), 1985 Chapel Hill Conf.
VLSI, Computer Science Press, pp 247-260, 1985.

[6] Alain J. Martin, Compiling Communicating Processes into Delay-
insensitive VLSI Circuits. Distributed Computing, 1,(4), Springer-
Verlag, pp 226-234 1986.

[7] Alain J. Martin, A Synthesis Method for Self-timed VLSI Circuits.
ICCD 87: 1987 IEEE International Conference on Computer
Design, IEEE Computer Society Press, pp 224-229, 1987.

[81 Alain J. Martin, Programming in VLSI: From Communicating I
Processes to Delay-insensitive Circuits. In C.A.R. Hoare (ed),

UT Year of Programming Institute on Concurrent Programming,
Addison-Wesley, Reading MA, 1989.

[9] Carver Mead and Lynn Conway, Introduction to VLSI Systems,
Addison-Wesley, Reading MA, 1980.

[10] J. K. Ousterhout et al., The Magic VLSI layout system, IEEE
Design Test Comput., 2, (1), pp 19-30, February, 1985.

[11] Charles L. Seitz, System Timing, Chapter 7 in Mead & Conway, 1
Introduction to VLSI Systems, Addison-Wesley, Reading MA,

1980.

Appendix 1: Notation

The program notation, which is inspired by C.A.R. Hoare's CSP [3],
is briefly described.

b t stands for b := true, b I stands for b := false.

20

I

The execution of the selection command [Gt - St1... IG, -- S,.,

where G, through G,. are boolean expressions, and S1 through S.
are program parts, (Gi is called a "guard," and G, --* Si a "guarded
command") amounts to the execution of an arbitrary S for which GC
holds. If -,(GI V ... V G,) holds, the execution of the command is
suspended until (Gt V ... V G,) holds.

The execution of the repetition command *[GI -- S1,... IG -G.

S.1, where G, through G. are boolean expressions, and S, through
S. are program parts, amounts to repeatedly selecting an arbitrary Si
for which G, holds and executing Si. If -'(GC V ... V G,) holds, the
repetition terminates.

For communication actions X and Y, "X e Y" stands for the
coincident execution of X and Y, i.e., the completions of the two
actions coincide.

IGI where G is a boolean expression, stands for IG --+ skip], and
thus for "wait until G holds."

(Hence, "[G]; S" and [G -+ S] are equivalent.)
*[Sl stands for *[true --o S], and thus for "repeat S forever."
From (iii) and (iv), the operational description of the statement

*JIG, -- sil... IU. -- S.1] is "repeat forever: wait until some G,
holds; execute an Si for which Gi holds."ICommunication commands: Let two processes, pl and p2,
share a channel with port X in pl and port Y in p2. (In the processes of
Figure 3, the same name is used for all the ports of the same channel.)
If the channel is used only for synchronization between the processes,
the name of the port is sufficient to identify a commnication on this
port. If the communication is used for input and output of messages,
the CSP notation is used: X!u outputs message u, and X?v inputs
message v.

At any time, the number of completed X-actions in pl equals the
number of completed Y-actions in p2. In other words, the completion
of the nth X-action "coincides" with the completion of the n-th
Y-action. If, for example, p1 reaches the nth X-action before p2
reaches the nth Y-action, the completion of X is suspended until p2

reaches Y. The X-action is then said to be pending. When, thereafter,
p2 reaches Y, both X and Y are completed. It is possible (and
even advantageous) to define communication actions as coincident and
yet implement the actions in completely asynchronous ways. For an
explanation, see [8].

21

I

Probe: Since we need a mechanism to select a set of pending I
communication actions for execution, we provide a general boolean
command on ports, called the probe. In process pl, the probe command
X has the same value as the predicate "Y is pending in p2."

Appendix 2: Instruction Set U
I

AU op rx ry rz rz,f := rx op ry
MEM op rx ry rz rz-.= mem[rx+ryl (for load)

rnmem[rx+ryj := rz (for store)
MEMOFF op ao ry rz rz := memjry + offset] (for load)

offset memfry + offset] rz (for store)
: ry + offset (for load address)

BRANCH op ao -cc if cond(fcc) then pc := pc + offset
offset

JUMP op ao ry- pc :ry
STPC opao- rz rz:-pc

Table 1: Instruction Types i

inst n3 n3 nj no

11 bsb,4blsbi2 bbbgbs I b~bsbsb 4 b3 b2blbo

alu 0011 rx ry rz
0100 rx ry rz

1111 rx ry rz

Id 0010 rx ry rz
st 0001 rX ry rz
ldx 0000 0000 ry rz
stx 0000 0001 ry rz I
Ida 0000 0010 ry rz
brc 0000 0011 - cc
jmp 0000 0100 ry
stpc 0000 0101 - rz

Table 2: Opcode Assignments I
I

22

I

ti I I Al I I

23

I°

Variants of the Chandy-Misra-Bryant Distributed
Discrete-Event Simulation Algorithm

Wen-King Su and Charles L. Seitz
Department of Computer Science
California Institute of Technology

Caltech-CS-TR-88-22

1. Introduction

We have been using variants of the Chandy-Misra-Bryant (CMB) distributed discrete-
event simulation algorithm [1,2,3] since 1986 for a variety of simulation tasks [4].
The simulation programs run on multicomputers [51 (message-passing concurrent
computers), such as the Cosmic Cube, Intel iPSC, and Ametek Series 2010. The

I . excellent performance of these simulators led us to investigate a family of variants of
the basic CMB algorithm, including lazy message-sending, demand-driven operation
with backward demand messages, and adaptive adjustment of the parameters that

I control the laziness.
These studies were also motivated by our interest in scheduling strategies for re-

active (message-driven) multiprocess programs [5,6,71, which are semantically similar
to discrete-event (event-driven) simulators. The simulator itself is implemented in
the reactive programming environment that we have developed for multicomputers:
the Cosmic Environment and the Reactive Kernel [8].

We performed the studies reported here using logic networks. Logic simulation
is expected to stress a distributed simulator, and is itself of practical interest. It
is easy to construct examples of logic networks with a diversity of behaviors and
structural difficulties, such as large fan-in and fan-out. Low-level logic elements such
as logic gates exhibit responses in which an input event may or may not influence the

I outputs, depending on the internal state of the element and on the states of other
inputs; yet, they require very little computation to simulate their behavior. Thus,
the performance results shown later in this paper involve practically no computation1 other than the distributed simulation itself.

This paper is a- brief and preliminary report of the simulation algorithms and
performance results. A more definitive report will be found in the first author's
forthcoming PhD thesis.

The research described in this paper was sponsored in part by the Defense
Advanced Research Projects Agency, DARPA Order number 6202, and monitored by
the Office of Naval Research under contract number N00014-87-K-0745; and in partI by grants from Intel Scientific Computers and Ametek Computer Research Division.

I

I
2. The CMB Simulation Framework I
As usual, the system to be simulated is modeled as a set of communicating elements. A
CMB simulator can be implemented by coding the behavior of elements in processes
that communicate by messages. A message conveys both a time interval and any
events within this interval. A process reacts to the receipt of an input message by
updating its internal state, and, if outputs can be advanced in time, by sending
messages to connected processes. These messages may include null messages that
convey no events (changes in the state information), but serve only to advance the
simulation time.

It is easy to show that such a simulator is correct [3), in the sense that it computes
a possible behavior of the system being simulated. A sufficient condition for freedom I
from deadlock in this eager message-sending mode is that there is a positive delay in

every circuit in the graph of element vertices and communication arcs. Intuitively,
it is the' delay of the elements being simulated that permits the element simulators
to compute the outputs over an interval that is later than the time of the inputs, so

that time advances. Simulation time is determined locally, and may get as far out of
step at different elements as their causal relationships permit.

This conservative (also known as pessimistic) type of simulator is a concurrent
program that exploits the concurrency inherent in the system being simulated. In
practice, just as with other concurrent programs, if the number of concurrently
runnable processes substantially exceeds the number of processors, one can achieve
high utilization of concurrent resources. The speculative (also known as optimistic) I
type of simulator attempts to exploit additional concurrency by computing beyond

the interval during which inputs are defined, at the risk of having to roll back if the
speculations prove incorrect. Such approaches are attractive for simulating systems I
whose inherent concurrency is insufficient, to keep concurrent resources busy, and in
which speculations can be made with high confidence. Our studies have concentrated
on conservative variants of the CMB algorithm.

The design of distributed simulation programs is also influenced by a characteristic
of the element simulators. In practice, an element simulator may or may not take as 5
long to process a null message as an event-containing message. For the simulation of
some systems, the processing of an event-containing message might involve a lengthy
simulation of a physical process, whereas the processing of a null message might be I
very fast. Such simulations .do not seriously stress the distributed-simulation aspect
of the computation. However, for the simulation c systems of extremely simple
elements, such as logic gates, the time required to compute the output of the gate is
so small that it is comparable to the time required to process a null message.

Due to our interest in understanding the limits of event-driven distributed
simulation, and the implications for scheduling strategies for message-driven
multiprocess programs, our studies have concentrated on the case in which the time
required to process null messages is comparable to the time required to process event- I
containing messages. It is straightforward to extrapolate the performance results for
this difficult case to situations in which null-message processing is relatively fast.

2 I

The principal trouble with naive implementations of conservative CMB distributed

simulation programs in any situation in which processing null messages is as costly as
processing event-containing messages is that the volume of null messages may gratly
exceed the number of event-containing messages. This difficultly is most evident when
simulating systems with many short-delay circuits that havc relatively low Levels of
activity.

In distributing the simulation, we seek to reduce the time required to complete
the computation; however, we have an immediate problem if the element simulators
must perform many more message-processing operations in the distributed simulation
than they would perform event-processing operations in a sequential simulation. The
centralized regulation of the advance of time achieved through the ordered event
list maintained by sequential simulation programs allows these simulators to invoke
element routines only once for each input event. The null messages inflate not only
the volume of messages the system must handle, but also the computational load.
Thus, if wc are going to compete with the best sequential simulators, we must reduce
the volume of null messages.

3. Indefinite Lazy Message Sending

To reduce the volume of messages, we use various strategies to defer sending outputs
in the hope that the information can be packed into fewer messages. For example, one
of the rr-nst obvious schemes is to'defer sending null messages, so that a series of null
messages and an event-containing message can be combined to form a single message
that spans a longer interval. Since output events are often triggered only by input
events, deferring the delivery of preceeding null messages is less likely to hamper the
progress of the destination element than deferring the delivery of event-containing
messages.

The first problem that must he addressed in employing such strategies is deadlock.
When element simulators defer sending output messages, they may cyclically deny
themselves input messages, leading to deadlock. All of our simulators have employed
a technique of indefinite lazy message sending to permit arbitrary strategies for
deferring message sending while still avoiding deadlock. The following is an idealized
inner loop of the simulator, shown in the C programming language:

while(1)
if (p = xrecvO)

simulate.and.optionally.send.messages(p);
else

take-other.actionO;

The function xrecv returns a pointer, p, that points to a message for the simulation
process if a message has been received. The simulator then dispatches to the
appropriate element simulator, and may either send or queue the outputs that the
element simulator produces. If there is no message in the node's receive queue, the
pointer returned is a NULL (0) pointer. In this case, the simulator takes other

3

I

action to break any possible deadlock.. For a source-driven simulator, it selects a
queued output to send as a message. For a demand-driven simulator, it selects a
blocked element, and sends a demand mesz;.Lge to its predecessor to request that I
queued outputs be sent. A deadlock in deferring messages cannot occur without
"starving" a node of messages. When this situation is detected by xrecv returning a
NULL pointer, the resulting action breaks the potential deadloci p

Within this indefinite lazy message-sending framework, we can experiment with
any scheme for deferring and combining messages without concern for deadlock. A
message is free to carry any number of events, and an element is free to defer message
sending on any basis.

4. Variant Algorithms

We have experimented with many CMB variants; in the interests of comprehension, we
will describe the operation and report the performance of six that are representative
of the range of possibilities that we have studied:

A Eager message sending: This basic form of CMB serves as a baseline for comparison
against the variants. I

B Eager events, lazy null messages: Null outputs are queued. Event outputs,
combined with any queued null outputs, are sent immediately. When xrecv returns I
a NULL pointer, the null output that extends to the earliest time is sent as a null
message.

C Indefinite-lazy, single-event: All output from element simulators is queued. The

output queues may contain multiple events. Messages are sent only when xrecv
returns a NULL pointer. The output queue that extends to the earliest time is i
selected to generate a message up to the first event, if any, or a null message to
the end of the interval.

D Indefinite-lazy, multiple-event: This scheme is a slight variation on C, motivated
by characteristics of multicomputer message systems that make it economical to
pack multiple events into fewer messages. All output from element simulators is
queued. The output queues may contain multiple events. When xrecv returns a
NULL pointer, the output queue that extends to the earliest time is selected to
generate a message up to the last queued event, if any, or a null message to the end I
of the interval. However, to allow a direct comparison with sequential simulators,

events are processed singly.

E Demand-driven: Although we usually think of simulation as source driven from I
inputs, one can e%.ually well organize the simulation as demand driven from
outputs. In the pure demand-driven form, all output from element simulators i
is queued. When xsend returns a NULL pointer, the input that lags furthest
behind selects the destination for a demand message. Upon receipt of a demand
message, if the output queue is not empty, the simulator sends all the information I
in the output queue; if the output queue is empty, the simulator generates another
demand message to the source of lagging input to this element.

4

I
F Demand-driven, adaptive: Demand messages single out critical paths in a

simulation. In an adaptive form of demand-driven simulation, a threshold is
associated with each communication path. Outputs of element simulators are
queued only up to the threshold; when the threshold is exceeded, the contents
of the queue are sent as a message. Demand messages operate as in E, but also
cause the threshold to be decreased. In the cases shown below, the threshold is
halved. The simulator is accordingly able to adapt itself to the characteristics of
the system being simulated.

Although these variants are described here in terms of message passing, the
same variants also appear as different scheduling strategies in shared-memory
implementations.

5. Experimental Method

In common with other highly evolved message-passing programs, the simulator is
implemented with one simulation process per multicomputer node (or, in the Cosmic
Environment, with one simulation process per host computer or per processor in a
multiprocessor).

Basis of comparison: Although execution time is one of the most natural bases
of comparison between any two programs that perform the same function, and is
used below to illustrate the performance of our distributed simulators on different
commercial multicomputers, execution time on these concurrent computers depends
both on the algorithm and on the characteristics of the particular computer. When
we wish to isolate the characteristics of the algorithm from those of the computer,
the instrumented simulator operates as a simulator within a simulator. Execution
time is then measured in a unit called a sweep [5, 6], which corresponds here to a
fixed time required to call an element once. The time required for other operations,
such as sending a message, can be set to a particular number of sweeps. Normally,
a message sent by one node in one sweep is available in the destination node at the
next sweep. However, to test the sensitivity of the algorithms to message latency, we
can also set the latency to larger values.

Instrumentation: The simulator is a reactive program written in C, and is
instrumented to function in two operational modes. In the sweep mode, a

multicomputer-emulation program runs a simulation of a multicomputer; this in turn
runs the reactive simulators. Time is measured in sweep units; on each sweep, each
node is allowed to make one element call. In the real mode, the simulator runs directly
on the multicomputer. There is one copy of the simulator process in each node, and
each simulator process runs a subset of the elements as embedded reactive processes.
Each node runs at its own'pace, and execution time is measured with UNIX's real-
time clock.

6. Experimental Results

Performance measurements have been made on a variety of logic networks, including
those that are representative of networks found in computers and VLSI chips, and

5I

I

those that are designed specifically to test or to stress the simulator. Six different n

network types, each in several sizes up to 4000 logic gates, have been the principal
vehicles for these experiments. A larger variation in performance is observed among
networks with different characteristics than between algorithm variants.

Multiplier example: The parallel multiplier is a good example of an ordinary logic
network. The 14x 14 multiplier used in several experiments employs 1376 logic gates
to generate the 28-bit product of two 14-bit binary inputs. The multiplier network
contains only limited concurrency, and does not contain tight circuits that give the
simulator artificial performance boosts or troubles, depending on element distribution. I
It also contains moderately high fan-out in the multiplier and multiplicand lines; this
puts pressure on the message system. In all fairness, the distributed simulation of
this multiplier network is not expected to do too badly nor too well.

For the simulation, the most-significant bit of the product is connected back to the
multiplier input via an inverting delay. The delay is such that the multiplier reaches I
a stable state before the multiplier input changes. The multiplicand input is set to a
value that causes the circuit to oscillate. A trace of the product outputs shows that
the simulator and the circuit are running correctly. I

Measurements in the sweep mode: The plot in Figure 1 portrays in a log-log format
the sweep count in the sweep mode versus the number of nodes, N, for the simulation
of the 14x14 multiplier network under all six CMB variants. It is not useful to
continue the plot beyond 211 nodes, since at this point there are as many nodes as
simulated gates. The placement of elements in nodes for these trials is balanced but I
random.

Each horizontal division represents a factor of two in resources; each vertical
division represents a factor of two in sweep count or time. We have found this format I
(cf [51) for portraying the performance of concurrent programs to be more useful than
"speedup" graphs, for two reasons. First, we can observe the factor by which the
execution time is reduced as resources are increased over very wide ranges. Second, I
since the ordinate is a physical measure, time or sweep count, we can compare different
algorithms directly. For example, in addition to the plots of the sweep counts of the
CMB variants, the heavy horizontal line represents the number of sweeps a sequential
simulator requires for this same simulation.

The first remarkable characteristic of these performance measurements is that they I
are so similar across this class of variant algorithms. Algorithms A, E, and F produce

more messages than B, C, and D, but in this mode in which messages are free but
element invocations are expensive, there is little difference between the variants. The I
performance under sweep-mode execution exposes the intrinsic characteristics of the
algorithm, and is not related to such multicomputer characteristics as the relationship
between node computing time and message latency.

The gross characteristics of these curves are similar to those of other concurrent
programs [5], and are quite understandable and predictable.I

We observe at log2 N=O (1 node) that all of the CMB variants are somewhat

inefficient in comparison with the sequential event-driven simulator. For this

6

multiplier example, the null messages inflate the number of element invocations by a
factor of 2-5 times; this is consistent with the 1-2.5-octave increase in sweep count
over that of the sequential simulator. The null messages also inflate the concurrency
over that which is intrinsic to the system being simulated. We shall refer to this
inflation in the number of element invocations as the overhead of distributing the
simulation. If the time required to process a null message were smaller than the
time required to process an event-containing message, the overhead would be reduced
proportionately.

log2(sweeps)
* ~20-

1 9

18 \- -

sequential simulatorI ~ ~17 __

*16- .. -15

i : : • i:: i •. - -.......
14

I13
12

........

9~ ~ ~... •- : .F

9 .. -.A0 1 2 3 4 5 6 .7 8 9 10 11
1092(nodes)

Fig 1: A 1376-gate multiplier, sweep mode

The performance is then divided roughly into two regimes, the first regime being
one of near-linear speedup in N for the first 7-8 octaves, and the second regime being
one of diminishing returns in N as the computing time approaches an asymptotic
mimimum value. In the linear speedup regime, these simulators nearly halve the
sweep count with each doubling of resources until limiting effects are reached. Load
balance is assured by the weak law of large numbers when there are many elements
per node. While each node has a sufficiently large pool of work, node utilization
remains high. The simulators approach asymptotic minimal time as they exhaust the
available concurrency in the system being simulated. The gradual "knee" of the curve
originates from progressively less-effective statistical load balancing as the number of
elements per node diminishes with larger N.

Additional statistics have been collected to measure other effects. For example,
in the linear-speedup regime, when there are many logic elements per node, the
simulators are quite insensitive to message latency. When there are few elements per
node, the performance begirs to deterioriate as message latency is increased. These

7I

I
effects will be evident in the measurements performed on real multicomputers. I

Measurements on real multicomputers: The results of simulating the same 1376-
gate multiplier network on a 16-node iPSC/2 is shown in Figure 2, and on a 128-node
iPSC/1 for variants B, C, and D is shown in Figure 3. The iPSC/2 is -6 times faster
per node than the iPSC/1, so the time scales do not correspond. This simulation
will not run on an iPSC/I for N < 4 because the data and message queues for an Iincreased number of logic elements per node will not fit in the node memory. Due to

the same limitations of the iPSC/1 message system, neither the demand-driven nor
the eager-message-sending simulation variants will run in most machine sizes. This I
choice of performance data is dictated by the desire to show performance results over
the largest range of N possible with the machines that are currently operated by
our research group. Results essentially identical to those shown in Figure 2 are also
obtained on a 16-node Ametek Series 2010.

1092(seconds) I
10 : -

10 n
9... .. I.. ..

7 •........

0 1 2 3 4 5 6 7'
log2 (nodes)

Fig 2: A 1376-gate multiplier for 40tss on an iPSC/2i

log2 (seconds)I

1quential simulator6 E

BC

5B

0 1 2 3 4 5 6 7
log2 (nodes)

Fig 3: A 1376-gate multiplier for 40ps on an iPSC/i

8!

1092(scondI

I
The simulation of this network for 20 < N < 27 is in the relatively uninteresting

(but useful) linear-speedup regime, with some limiting effects starting to be seen in
Figure 3 at N=2'. The number of gates being simulated per n6de is sufficiently high
to keep the node utilization high and the sensitivity to message latency low.

In order to exhibit the performance results in the more interesting (but less useful)
diminishing-returns regime, we have scaled the network down to a 4-bit multiplier
with 116 logic gates. The peformance on an Intel iPSC/2 up to 16 nodes is shown
in Figure 4, and on an Intel iPSC/1 up to 128 nodes is shown in Figure 5. This
network is small enough to exhibit interesting limiting effects as the simulation
is increasingly distributed. The sublinear speedup is due to message latency in
inter-node communications, increased null messages as the simulation is increasingly
distributed, and load imbalance. The asymptotic time is limited by the message
latency rather than by the available concurrency. In particular, Figure 5 shows that
the asymptotic execution time of algorithm A, which is not very economical in its use
of messages, is more than a factor of two worse than the asymptotic execution time
of variants B, C, and D.

log2(seconds)

7 8

7 • -... • •.... •.T.... •.... •

I 8.... ...-. i i

• .' ential simulator

I....... 5-

4.

0 1 2 3 4 5 6 7
log2(nodes)

Fig 4: A 116-gate multiplier for l00ps on an iPSC/2

log2(seconds)
S1 0 -..........--

..

I8 s uential sim ulatorI A
7ii

C
* ýD6- :B

0 1 2 3 4 5 6 7
log2(nodess)

Fig 5: A 116-gate multiplier for l00ps on an iPSC/1

9I

7. Hybrid CMB Variants I
Although the CMB variants exhibit good speedup over wide ranges of N, speedup
measures only the performadice of the algorithm relative to less-distributed instances
of itself. In comparison with the sequential simulator, the distributed simulators must
pay the overhead of processing null messages. If the elements used in a simulation
are such that the time required to process null messages is considerably less than
the time to process event-containing messages, these conservative CMB variants will
provide excellent performance and efficiency.

However, if the time required to process null messages is comparable to the time i
required to process event-containing messages, as it is for logic simulation, this
overhead makes the CMB algorithm and its variants problematic for simulations on i
parallel computers in which N is small. What might be done to extend the CMB
approach into this difficult small-N range?

A component of the overhead that cannot be eliminated within the CMB
framework, in which elements are independent processes, is the null messages used
to force progress in cycles of idling elements. However, we can take advantage of
multiple elements sharing the same node by lumping members of low-latency, low-
activity cycles, such as the gates that form a latch, into macro elements, and applying
sequential simulation to them internally. The null-message-processing overhead for
such cycles is eliminated at the cost of reduced concurrency for their members.

In this type of hybrid CMB variant simulator, all elements in each node are
combined into one macro element, which is simulated internally with a conventional,
ordered-event-list, sequential simulator. These sequential simulators are tied together
externally with one of the CMB variant simulators. Since there is only one macro
element per node, the hybrid variants are identical at N=1 to a sequential simulator.
As N increases, however, more cycles are partitioned over multiple nodes, and each
hybrid variant eventually converges with its corresponding CMB variant.

Measurements in sweep mode: Figure 6 shows the performance results for the CMB I
variants simulating a ring of 28 self-timed FIFO units. Each FIFO unit contains one
FIFO-control cell and eight register cells, implemented with a total of 1067 logic gates.
The FIFO ring is 50% full, holding 14 alternating 1- and 0-bytes. The overhead at
N=1 is caused by the idling of the cross-coupled NAND latches in the registers and
the FIFO controls. The CMB variants show a good speedup with increased N. Except U
for the initial overhead, the performance of all of the CMB variants is excellent.

Figure 7 shows the simulation results for the same circuit using the hybrid CMB
variants with an element-distribution method that tends to place elements of each I
cycle in the same node.

1
I

10 I

Log2(swee ps)
19 : 71 9•.....

sequential simulatort
1 6

1 5 ,* e•.....
31 i...... " , • I...... -...... . .

14 s

I ~13-
1 2

1 0

9 0 1 2 3 5* .. 6 7 8 9 1'0 1'1Iog2 (nodes)

Fig 6: FIFO ring, non-hybrid simulator, emulation mode

10g2(sweeps)
1 9 i

18 " Ti e u n l I s.u.o r4.... .,.........

1 5* ' ÷....... i.......... • • -..........
17 - - -se unilsimiu ator

1 6

1 55..

1 4 1• • - -- : .- -
144I13.....
12

1 0I0 1 2 3 4 5 6 7 8 9 0i
0 1 2 20 5 6 7 0 91011

log2(nodes)

Fig 7: FIFO ring, hybrid simulator, emulation mode

Although the hybrid simulator exhibits a generally decreasing sweep count with
increasing N, and extremely good small-N performance for the demand-driven variant
E, less desirable behaviors have been observed for the hybrid variants. In particular,
if the elements are not properly distributed, or cannot be properly distributed, the
simulation time may increase starting at N=2 before starting to decrease. This effect
is the result of cycles being broken and scattered over multiple nodes, so that it is the
CMB rather than the sequential algorithm that dominates the execution time. Figure

11

8 illustrates the performance of the simulator for the same circuit used in Figures 6 I
and 7, but with random placement of the elements across the nodes.

log 2(-sweepS) I
19

S......... • ' !'.... .• T " !......

18 I

1 1 •...•i-........... • . ,

17 sequential simu lator

15

14-
13 -

121

.... used to produce pe for

10. -

0 1 2 3 4 5 6 7 8 9 10 1 1
1og 2 (nodes)

Fig 8: FIFO ring, hybrid simulator, randomized

Some programming short-cuts were used to produce these sweep-mode perfor-
mance measures for the hybrid variants without implementing a regular sequential I
simulator; thus, we are not able to include corresponding performance graphs for real
multicomputers. However, the instrumentation of the hybrid sweep-mode simulations, 5
together with the performance parameters of second-generation multicomputers such
as the Intel iPSC/2 and Ametek Series 2010, indicate that the performance on real
multicomputers will be essentially similar to that in the sweep-mode. We are cur-
rently implementing distributed simulation programs and instrumentation to run the
hybrid CMB variants on real multicomputers.

8. Conclusions
We selected logic simulation for these experiments because we wished to examine 5
the limits of the applicability of the conservative CMB algorithm and its variants.
Simulating the behavior of relatively simple elements that have a high degree of
connectivity was expected to be a difficult case for distributed simulation. Indeed, the I
performance results presented here have been much more revealing of the capabilities
and limitations of the distributed discrete-event simulation algorithms than earlier
simulations that we performed of systems such as multicomputer message networks.

The reader should accordingly be cautious about drawing negative conclusions
about the CMB framework from our comparisons of the performance of the CMB
variants with the ordered-event-list sequential simulator. For objects of distributed
simulation that are less demanding than logic simulation, such as systems in which

12

I

processing null messages is much faster than processing event-containing messages,
the overhead is proportionately scaled down, and the following general conclusions
remain valid:

1. Selected CMB varients exhibit excellent speedup over a wide range of N, limited
eventually only by the concurrency of the system being simulated.

2. The CMB variants presented here, all based on the indefinite-lazy-message-sending
framework, provide a useful improvement over the basic eager-message-sending
CMB algorithm.

3. The hybrid CMB variants offer promise of efficient distributed simulation on small-
N concurrent computers.

In some respects, the CMB and sequential algorithms make poor comparison
subjects because these two algorithms represent relatively orthogonal optimizations
in the basic task of simulation. While the execution time of the sequential simulator
is sensitive only to the activity level of the circuit, the execution time for the fully
distributed CMB algorithm is sensitive only to the structure of the circuit. In the
FIFO-ring example, we can use more data bytes, fewer data bytes, or a different

set of data bytes, and shift the sequential simulator's execution time proportionately
without significantly changing the CMB variants' curves. Similarly, we can shift the

CMB variants' curves without affecting the execution time of the sequential algorithm
by varying the delay of the gates in the latches.

The hybrid CMB variants attempt to combine the best aspects of the sequential

and CMB algorithms by allowing the sequential simulator to dominate when N is
small, and the CMB variants to dominate when N is large. This approach may or may

not produce a favorable result, depending on whether the elements can be properly
distributed. More research needs to be done in the area of element distribution and
its effect on the hybrid variants.

9. Acknowledgment

We very much appreciate the constructive suggestions, ideas, and encouragement

that we have received from K. Mani Chandy.

* 10. References

[1] K. Mani Chandy and Jayadev Misra, "Asynchronous Distributed Simulation Via

a Sequence of Parallel Computations," CA CM 24(4), pp 198-205, April 1981.

[21 Randal E. Bryant, "Simulation of Packet Communication Architecture Computer3 Systems," MIT-LCS-TR-188, Massachusetts Institute of Technology, 1977.

[31 Jayadev Misra, "Distributed Discrete-Event Simulation," Computing Surveys
18(1), pp 39-65, March 1986.

[41 "Submicron Systems Architecture," Semiannual reports to DARPA, Caltech
Computer Science Technical Reports [5220:TR:86] and [5235:TR:86], 1986.

13

!

(51 William C. Athas and Charles L. Seitz, "Multicomputers: Message-Passing I
Concurrent Computers," IEEE Computer 21(8), pp 9-24, August 1988.

[6] William C. Athas, "Fine Grain Concurrent Computation," Caltech Computer I
Science Technical Report (PhD thesis) [5242:TR:871, May 1987.

[71 William J. Dally, A VLSI Architecture for Concurrent Data Structures, Kluwer

Academic Publishers, 1987.

[8] Charles L. Seitz, Jakov Seizovic, and Wen-King Su, "The C Programmer's Ab-
breviated Guide to Multicomputer Programming," Caltech-CS-TR-88-1, January
1988.

1p
!I
!I
I
I
I
I
I
l
U

143

I

I The Essence of Distributed Snapshots

K. Mani Chandy"
California Institute of Technology

I 6 March 1989
Caltech-CS-TR-89- 5

I
1 Introduction

A distributed system has no global clock, and it is the absence of a global
clock that makes for several interesting problems, one of which is obvi-

ously important, but apparently trivial: 'Record the state of the system.'
Recording the state of distributed system is called 'taking a global snap-
shot' after (2]. If there were a clock, taking global snapshots would be
straightforward: Each process records its state or at some predetermined
time, and the collection of recorded process states is used to construct a
system state.

Global snapshots are useful in a variety of situations [2,3,61. The goal
of this paper is to identify the essential properties of global snapshots so as
to simplify proofs of global snapshot algorithms and to aid in the design of
new algorithms.

2 A Distributed System

2.1 Standard Definitions

We shall first define a distributed system as in 181.

I"Supported in part by DARPA-6202, monitored by ONR N00014-87-K-0745

1 1

I
I

'I
il

A prefix of a sequence z is an initial subsequence of z. A prefix-closed
set of sequences is a set such that every prefix of a sequence in the set is u
also in the set.

A system is a set of components. A component is a set of events and a
prefix-closed set of sequences of its events called its set of computations.

A projection of a sequence v on a component is the sequence obtained
from v by deleting all events in v that are not events of the component.

A system computation is a sequence v of events of components of the
system such that the projection of v on each component of the system is a
computation of that component.

Let w.p be a computation of component p, all p. Let P be a set of
components. An interleaving of a set of component computations {w.p Ip E
P} is a sequence, v, of events of components in P, such that the projection p
of v on p is w.p, all p E P.

We use (y, z) for the catenation of sequences y and z. p
2.2 Processes and Channels

A component of a distributed system is either a process or a channel. Dis- I
tinct processes ha ve disjoint sets of events, and distinct channels have dis-
joint sets of events.

A channel is used by exactly two processes. The events of a channel are
events of the processes that use the channel. We shall restrict attention to
channels that satisfy the following monotonicity condition. I

Let c be a channel used by processes q and r. Let u, v be computations
of c, where u.r = v.r, and u.q is a prefix of v.q. Let e be an event oa r. p
A Monotonicity Property If (u, e) is a computation of c, then (v, e) is
also a computation of c.

Explanantion The monotonicity condition implies that the execu-

tion of events on one process cannot inhibit the execution of an event on
another process. If a channel c is used by processes q and r, and there. is
a computation of c in which e is executed on process r after q and r have

executed computations a and b respectively, then there is a computation

2I

of c in which e is executed after r has executed b, and q has executed an
arbitrary sequence of events following a.

Example: Bounded First-In-First-Out Buffers Consider a first-
in-first-out buffer, with a capacity of N messages (N > 0), shared by a
single producer process and a single consumer process. Such a buffer is
a channel that has the monotonicity property, as shown by the following
informal argument.

The producer can append any message to the buffer if the buffer is not
full. The consumer can receive a message m from the buffer if the buffer
is not empty and m is the message at the head of the buffer queue. If
the producer can produce a message after it has produced i messages and
the consumer has consumed j messages, then the producer can produce a
message after it has produced i messages, and the consumer has consumed
more than j messages. Therefore, the monotonicity property holds with r
as the producer and q as the consumer.

By a similar argument, additional production does not prevent the con-
sumer from receiving the message at the head of the buffer; the mono-
tonicity property also holds with r as the consumer and q as the producer.
Therefore, the channel has the monotonicity property.

Example: Stacks Next consider a channel which is a stack. Let m be
the message at the top of the stack, if the stack is not empty. The consumer
can execute the event: Pop the stack and consume m. The producer can
execute an event: Push a message m' on top of the stack. Such a buffer
does not have the monotonicity property because an event of the producer
- push m' on the stack - where m $ in, can prevent the consumer from
executing the event: Pop the stack and receive message m. Therefore, an
event on one process can inhibit the execution of an event on the other.

Note: Symmetry of Processes One way of defining channels is in
terms of causality: one of the processes sends a message on the channel, and
the other receives the message, thus there is a causal relationship between
the sending and the receiving of the message. The definition of channels
used in this paper is symmetric with respect to both processes; the defini-

3

tion does not employ the concept of causality. Monotonicity appears to be
an important property of channels of distributed systems. p
3 The Problem

Restrict attention to one given system. Let z be a finite computation of the
system. For ease of exposition, assume that all events in z are distinct. (If I
events are repeated in z, then number the events, so that the pair - event-
name, number - is distinct.) Let z.p be the projection of z on a process
p. Let z.p be any prefix of z.p. Let S be the set of process computations p
{x.viJp is a process).

Set, S, is defined to be a global snapshot in z if and only if there exists

a system computation y where:

1. y is an interleaving of the set of process computations z.p, and

2. every event in S occurs in y before every event that is not in S.

The problem is to determine simple necessary and sufficient conditions
for S to be a global snapshot in z.

Motivation for the Problem Set S is a global snapshot in z if and only I
if there is a system computation that first takes the system to a state in
which each process p has executed x.p, and then to the state in which each
process p has executed z.p. Informally, S is a global snapshot in z if and
only if it could have happened that all events in S were executed before all
events that are not in S. If S is a global snapshot in z, then properties
about S can be used to deduce properties about the state of the system
after z is executed. Therefore, it is helpful to determine simple conditions
that guarantee that S is a global snapshot.

4 A Solution I
The obvious algorithm to determine if S is a r,,obal snapshot in z is as

follows: Since z is finite, enumerate all interleavings of z.p, and determine I
if there is one with the desired properties. This approach is computationally

4I
I
I

intractable if the number of processes is large. Next, we present a theorem
that helps us to design tractable solutions.

4.1 Compatible Computations

Let c be a channel. Let c be used by processes q and r. Let u and v
be computations of q and r respectively. Process computations u and v
are defined to be compatible with respect to c if and only if there exists an
interleaving w of u and v such that the projection of w on c is a computation

* of c.
Informally, u and v are compatible with respect to c if and only if process

computations u and v could have occurred in a computation of a system
consisting of only the two processes q and r, and the single channel c.

Example: Bounded First-In-First-Out Buffers Let c be a channel
that is a first-in-first-out buffer with a capacity of N where N > 0, and
where the buffer is initially empty. Let u and v be computations of the
processes that send and receive (respectively) on the channel. Then u and
v are compatible with respect to c if and only if the sequence of messages
received along c in v is a prefix of the sequence of messages sent along cI in u, and the number of messages sent along c in u exceeds the number of
messages received along c in v by at most N.

Let z and x.p be as in the problem definition, i.e., z is a system com-
putation and z.p is a prefix of z.p. Let the producer and consumer for c
be q and r respectively. Since z is a system computation, the sequence of
receives along c in z.r is a prefix of the sequence of sends along c in z.q.
Therefore, the sequence of receives along c in z.r is a prefix of the sequence
of sends along c in z.q if and only if the number of receives along c in z.r
is at most the number of sends along c in z.q. Therefore z.q and z.r are
compatible with respect to c if and only if

0 < (nsends - nreceives) < N

where nsends and nreceives are the numbers of sends and receives along
channel c in z.q and x.r respectively.

15I

4.2 The Snapshot Theorem and its Applications

We shall first give the theorem, discuss its consequences, and then prove it.
Let z, z.p, z.p and S be as given earlier. p
Theorem Set, S, is a global snapshot in z if and only if, for each channel,
C:
x.q and x.r are compatible with respect to c, where q and r are the processes
that use r.

Applications of the Theorem The proof that S is a global snapshot of
an arbitrary system reduces to a proof of compatibility of a pair of process
computations for each channel. Let us use this fact in developing algorithms p
for a couple of problems. The following discussion is very brief and informal,
because our goal is only to demonstrate the use of the theorem, rather than
to give a thorough exposition of the algorithms.

The Snapshot Algorithm We shall develop the algorithm in f21.
Consider a system in which channels are first-in-first-out and the capacity
of a channel is arbitrarily large. Initially all channels are empty. We wish
to develop a distributed algorithm to record the global state of the system.

Consider a channel c used by processes q and r, where q sends along c,

and r receives along c, and initially c is empty. As discussed earlier, process
computations z.q and z.r are compatible with respect to c if and only if the
number of receives along c in z.r is at most the number of sends along c in
z.q. Therefore the problem of algorithm design reduces to this: Guarantee
that the number of receives before the receiver records its state is at most
the number of sends before the sender records its state, and also guarantee
that every process records its state eventually. 3

One way of doing this is as follows: After a process records its state, it
sends a special message called a marker along each of its outgoing edges.
On receiving a marker a process records its state if it has not done so. I
At ieast one process (called the initiator) records its state in finite time;
if there is a path (a sequence of channels) from the initiator to all other
processes then every process records its state in finite time of the intiator.

6
6

I
I

Logical Time Consider the same system as in the previous para-
graph. Let z be a computation of the system. We are required to give each
event in z a unique number, called its logical time, such that the set of
events with logical times less than n corresponds to a global snapshot in z,
for all n. Let x.p be the prefix of z.p consisting of all events with logical
times less than n; we require that the set S (defined as before as {z.p)) beI a global snapshot.

As in the previous problem, the problem of algorithm design reduces to

this: Guarantee that for each channel c, the number of messages received
along c in z.r is at most the number of messages sent along c in z.q, where
q and r are the processes that send and receive along c, respectively. This is
equivalent to: guarantee that logical times of events are such that the event
of receiving a message has a higher logical time than the event of sending
that message. One way of doing so is in [7]: put a time-stamp t on each
message where t is the logical time of the event that sends the message, and
give the event that receives a message a logical time that is greater than
the time-stamp of the message.

*(The goal for logical time in the seminal paper [7] is different from that
given here, because it is based on the concept of causality. Our goal here
is limited: to deminstrate a use of the snapshot theorem.)

4.3 Proof of The Snapshot Theorem

Snapshot Theorem Let z be a finite computation of the system. Let
z.p be a prefix of z.p, all p. Let S be the set of process computations {z.plp
is a process }. Set S is a global snapshot in z if and only if, for each channel
c, computations z.q and z.r are compatible with respect to c, where q and
r are the processes that use c.

Proof If x.q and z.r are incompatible with respect to c, then there is
no interleaving of x.q and z.r that is a computation of c, and hence S is
not a global snapsiiot. Next, we prove that if for each c, z.q and z.r are
compatible with respect to c, where q, r use c, then S is a global snapshot.
The proof given here is a generalization of the proofs given in [2,51 which
are limited to unbounded first-in-first-out channels.

I
7

I
I

Define sequence y as follows: y is the permutation of z where all events
in S occur before all events that are not in S, and apart from this change, p
the order of events in z is retained in y. We shall prove that S is a global
snapshot by proving that y is a system computation.

Let w be a permutation of z. We shall give an algorithm which starts p
with w = z and that ends with w = y, and where the algorithm maintains
the invariant: w is a system computation.

The Algorithm Initially w = z. While w- contains a pair of adjacent
elements d and e, where d occurs before e, and d is not in S, and e is in S:
interchange the positions of d and e in w. p

Proof of Termination We prove that the algorithm terminates in I
a finite number of steps by using the metric: the number of pairs (f,g),
where event f occurs earlier than event g in w, and f is not in S, and g is
in S. The algorithm terminates if and only if the metric is zero, in which
case w = y.

The metric has a finite value initially, and every step decreases it; henceI
the algorithm terminates in a finite number of steps.

Proof of the Invariant We prove the stronger invariant that w.p = I
z.p, all processes p, and w.c is a computation of c, all channels c, where w.d
and z.d are the projections of w and z, respectively, on component d. The
invariant holds initially, because w = z. Let w' be the same as w except I
that d and e are interchanged. Our proof obligation is to show that w'
satisfies the invariant if to satisfies it. i

Since z.q is a prefix of z.q and since w.q = z.q, it follows that z.q is
a prefix of w.q. Therefore, if two adjacent events in to are on the same

process, q, and the first of the two events is not in x.q, then the second is I
not in z.q eithe:. Since d is not in S and e is in S, it follows that d and
e cannot be on the same process. Let d be on process q and let e be on
process r, where r : q. I

Since d and e are on different processes, w'.p = w.p, all p, and therefore
WI.p = z.p. I

8 !
I
I

If d and e are on different channels, then the projections of w and w' on
each channel are identical, and hence the invariant holds for w'. Therefore,
we need only consider the case where d and e are on the same channel; let
this channel be c. Our only remaining proof obligation is to show that w'.c
is a computation of c.

Let t be the prefix of w preceding d in w. Then (t, d, e) is a prefix of w,
and (t, e, d) isa prefixofw'.

Since z.q and z.r are compatible with respect to c, there exists an inter-
leaving h of z.q and x.r such that the projection of h on c is a computation
of c. Event e is in z.r, and therefore is in h. Define u as the prefix of h
preceding e. Therefore, (u, e) is a prefix of h, and hence it is a computation
of c. Since both u.r and t.r are the prefixes of z.r that precede e, it follows
that u.r = t.r. Since d is not in z.q, it follows that z.q is a prefix of t.q.
Since u.q is a prefix of z.q, it follows from the transitivity of the prefix
relation that u.q is a prefix of t.q. From the monotonicity property, the
projection of (t, e) on c is a computation of c.

Applying the monotonicity property again, the projection of (t, e, d) on
c is a computation of c, since the projections of (t, d) and (t, e) on c are
computations of c.

Let m be the length of the sequence (t, e, d). We shall prove by induction
on k, that for k > m: g'.c is a computation of c where g' is the prefix of tw'
of length k.

Base Case: k = m. This case has already been proved.
Induction Step: Let f be the (k + 1)-th event in w. Our proof obligation

is to show that the projection of (g', f) on c is a computation of c. Let g be
the prefix of w of length k. The projection of (g, f) on c is a computation
of c because (g,f) is a prefix of w. From the induction hypothesis, the
projection of g' on c is a computation of c. For k > m: g.q = g'.q and
g.r = g'.r. If f is on c, the from the monotonicity property of c, the
projection of (g', f) on c is a computation of c. If f is not on c, then the
projection of (g', f) on c is the same as the projection of g' on c, and the
result follows.

9

I1

5 Partial Snapshots

There are some problems in which a snapshot of some subset of processes
and channels is useful, and a global snapshot of all processes and channels
is not necessary. We define a partial snapshot of a set of processes, Q,I
in a manner analogous to the definition of a global snapshot. Let z be a
system computation. Let z.p be a prefix of z.p. Let S be the set of process
computations {z.qlq E Q}. Set S is defined to be a partial snapshot in z if I
and only if there exists a system computation y where:

1. y is an interleaving of the set of process computations z.p, all processes I
p, and

2. for each process q in Q, the events in z.q appear in y before the events 1
of q that are not in z.q.

A partial snapshot is a global snapshot if Q is the set of all processes. I
Next, we shall define a class of problems for which partial snapshots are

helpful. l

5.1 Termination Problems

Let w be a system computation. Set, Q, is defined to have terminated after
w if and only if,

1. for all events e, and all processes q in Q, if (w.q, e) is a computation 1
of q, then e is an event on a channel between q and a process in Q,
and

2. for all channels c between processes in Q, there is no event e such
that (w.c, e) is a computation of c. 1

Informally, the first condition says that after a process q has executed w.q
it can only execute events on channels connecting it to other processes in
Q. The second condition says that there is no extension of a computation p
of a channel c between processes in Q after w. The two conditions, to-
gether, imply that the processes in Q cannot execute events after system
computation w.

10 I
I
I

Example: Full-Buffer Deadlock Consider a system in which each
channel is a buffer with a capacity of N, where N > 0. A process is
either waiting or active. A waiting process is waiting to send a message on
any one of a set of full outgoing channels (i.e., channels containing N mes-
sages); a waiting process continues to wait until at least one of the channels
that it is waiting for becomes not full, and it then sends a message on that
channel and becomes active. Waiting processes do not receive messages. A
set of processes, Q, is said to be deadlocked if and only if:

1. each channel between processes in Q is full (or equivalently, the num-
ber of messages sent on the channel exceeds the number of messages
received on the channel by N), and

2. each process in Q is waiting to send messages only along channels to
other processes in Q.

N The problem is to detect a deadlocked state.
A dual of this problem is obtained by replacing 'full' by 'empty', 'send'

by 'receive', and 'outgoing' by 'incoming' in the previous problem.
Next, we give a theorem that shows how partial snapshots may be em-

ployed.

5.2 Termination Detection Theorem

Let v be a system computation such that Q terminates after v. If z is a
system computation such that for all q in Q, v.q is a prefix of z.q, then
v.q = z.q, for all q in Q.

Proof We prove by induction on the length of prefixes u of z, that &.q
is a prefix of v.q, for all q in Q. In particular, we prove that z.q is a prefix
of v.q. Since v.q is a prefix of z.q, it follows that v.q = z.q.

3 Base Case u is the empty sequence. The result holds, trivially.

Induction Step Consider a channel c used by processes q and r,
where both q and r are in Q. Let u.r = v.r (and u.q is a prefix of v.q from
the induction hypothesis). From the monotonicity property, for all events

I 11

I
I

I
• I

e on c, if the projection of (v, e) on c is not a computation of c, then the
projection of (u, e) on c is not a computation of c. Since Q terminates after
v, the projection of (v, e) on c is not a computation of c. Hence, if u.r = v.r,
for all events e on c, the projection of (u, e) on c is not a computation of
c. Since Q terminates after v, the only eveDts on r after v.r are events on
channels to other processes in Q. Hence, if u.r = v.r, there is no event e on
r such that (u, e) is a system computation.

From the arguments of the last paragraph, if (u, e) is a computation of
z, then e is on a process r such that u.r 0 v.r. Since u.r is a prefix of
v.r, the length of u.r is less than the length of v.r In this case, (u.r, e) is a

prefix of v.r, since both (u.r, e) and v.r are prefixes of z.r, and the length
of (u.r, e) is at most the length of v.r. p
5.3 Applications of the Theorem

The termination detection theorem tells us that old data (v.q) is current
(because v.q = z.q) if the old data shows that Q has terminated. This
suggests the following class of algorithms for termination detection; this
class includes algorithms in [1,4,9].

A Class of Algorithms for Termination Detection The algorithms
employ a set of process computations {v.qlq E Q} and have the following
specification. p

Invariant v.q is a prefix of z.q where z is the system computation up
to the current point.

Progress For all q, if the current value of z.q is, say, y.q, then even-
tually y.q is a prefix of v.q. (The progress property says that the process
computations v.q get updated: eventually, v.q will include the current value,
y.q, of z.q.)

The algorithm determines that Q has terminated if Q terminates after
{v.qjq E Q}, i.e., if Q terminates after a system computation, y, where
y.q = v.q, all q in Q.

12 U
I
I

Correctness The proof of correctness of this class of algorithms is as
follows. From the invariant and the theorem, if Q has terminated after
{v.qlq E Q}, then Q has terminated after z. From the progress property, if
Q terminates after z, then eventually v.q = z.q, and hence eventually, the
algorithm determines that Q has terminated.

Example Next, we give an example of algorithms with the invariant and
progress properties given earlier. To detect termination of Q, a token is
sent from process to process in Q, in such a manner that the token visits
every process in Q repeatedly. The token carries with it a set of process
computations {v.qlq E Q}. Initially, v.q is the empty sequence. When the
token arrives at a process q, it updates this set, by replacing the value of
v.q in the set by its current computation, and q determines that Q has
terminated if Q terminates after {v.qlq E Q}.

Various optimizations are possible in applying this method to detect a
specific form of termination. For example, to detect full-buffer deadlock,
it is not necessary for the token to carry the entire computation v.q; it is
sufficient for the token to contain the number of messages sent and received
on each channel by q in v.q, and the set of processes for which q is waiting.

6 Summary

The paper presents necessary and sufficient conditions for a set of process
computations to be a global snapshot. The condition is that for every
channel, the computations in the snapshot of the processes that use the
channel, are compatible with respect to the channel. The condition is
helpful in the development of algorithms.

The paper also presents the concept of partial snapshots and demon-
strates its utility.

References

[1] Chandy, K. M.[1987] 'A Theorem on Termination of Distributed Sys-
tems', TR-87-09, March 1987, Dept. of Computer Sciences, The Uni-
versity of Texas at Austin, Austin, Texas 78712-1188.

13

p
p

12] Chandy, K. M., and L. Lamport 119851. 'Distributed Snapshots: Deter-
mining Global States of Distributed Systems,' ACM TOCS, 3:1, Febru- p
ary 1985, pp. 63-75.

(31 Chandy, K. M. and J. Misra (1988] Parallel Program Design: A Foun-
dation, Addison-Wesley, Reading, Massachusetts, 1988.

[4] Ch ady, K. M. and J. Misra [1988] 'On Proofs of Distributed Algorithms N
with Application to the Problem of Termination Detection', submitted
to Distributed Computing [1987]. p

[5] Dijkstra, E. W. [1985]. 'The Distributed Snapshot of K. M. Chandy
and L. Lamport,' in Control Flow and Data Flow, ed. M. Broy, Berlin:
Springer-Verlag, 1985, pp. 513-517.

[61 Fischer, M. J., N. D. Griffeth, and N. A. Lynch 11982]. 'Global States
of a Distributed System,' IEEE Transactions on Software Engineering, I
SE-8:3, May 1982, pp. 198-202.

[71 Lamport,L.[1978] 'Time, Clocks and the Ordering of Events in a Dis-
tributed System,' C.ACM, 21:7, July 1978, pp 558-565.

[8] Hoare, C. A. R. [1984]. Communicating Sequential Processes, London: 3
Prentice-Hall International, 1984.

[91 Raynal, M., J.-M. Helary, C. Jard, and N. Plouzeau (1987]. 'Detection U
of Stable Properties in Distributed Applications,' in Proceedings of the
Sixth Annual ACM Symposium on Principles of Distributed Comput-
ing, 1987, pp. 125-136.

II
I

14 1
i
I

To be published in Proc 1989 ACM Symposium on Paralled Algorithms
and Architectures

A Framework for Adaptive Routing in Multicomputer
Networks

John Y. Ngai and Charles L. Seitz
Department of Computer Science, California Institute of Technology

Submitted to the 1989 ACM Symposium on Parallel Algorithms and Architectures*

Introduction A much more detailed exposition, including results
Message-passing concurrent computers, also known on performance modeling and fault-tolerant routing,
as multicomputers, such as the Caltech Cosmic Cube can be found in [5].
[1] and its commercial descendents, consist of many The Adaptive Cut-Through Model
computing nodes that interact with each other by h dpieCu-hog oecomputing anodresthitin terages wothveahoter commn It is clear that in order for the adaptive multipath
sending and receiving messages over communication scheme to compete favorably with the existing obliv-
channels between the nodes 12]. The communication ious wormhole technique, it must employ a switch-
networks of the second-generation machines, such ing technique akin to virtual cut-through [6]. In cut-
as the Symult Series 2010 and the Intel iPSC2, em- th ching an its cking var In chti
ploy an oblivious wormhole routing technique 13,41 through switching and its blocking variant, which is
ploy gantobeieis weadlorkhoreeroutig Techne mg used in oblivious wormhole routing, a packet is for-
that guarantees deadlock freedom. The message warded immnediately upon receipt of enough header

latency of this highly evolved oblivious technique information to make a routing decision. The result is

has reached a limit of being capable of delivering,

under random traffic, a stable maximum sustained a dramatic reduction in the network latency over the
throughput of ;u 45 to 50% of the limit set by the conventional store-and-forward switching technique
nethoroughpuctiof ban45 idto .5% ofurthe r imit phe- under light to moderate traffic. We now describe
network bisection bandwidth. Any further improve- a simple cut-through switching model that provides
ments on these networks will require an adaptive the context for the discussion of issues involved in
utilization of available network bandwidth to diffuse pefrigaptvroininmtco utre-

loca conestins.performing adaptive routing in multicomputer net-
local congestions. works. The following definitions develop the nota-

In an adaptive multipath routing scheme, message tion that will be used throughout the rest of the
routes are no longer deterministic, but are con- paper.
tinuously perturbed by local message loading. It Definition 1 A Multicomputer Network, M, is a
is expected that such an adaptive control can in- connected undirected graph, M = G(NC). The
crease the throughput capability towards the bi- vertices of the graph, N, represent the set of com-
section bandwidth limit, while maintaining a rea- puting nodes. The edges of the graph, C, represent
sonable nefwork latency. While the potential gain
in throughput is at most only a factor of 2 under the set of bidirectional communication channels.

random traffic, the adaptive approach offers addi- Definition 2 Let ni E N be a node of M. The set,
tional advantages, such as the ability to diffuse local Ci g C, is the set of bidirectional channels connect-
congestions in unbalanced traffic, and the potential ing ni to its neighbors in M.
to exploit inherent path redundancy in richly con-
nected networks to perform fault-tolerant routing. Definition 3 The width, W, of a channel is the
The rest of this paper consists of an examination number of data wires across the channel. A flit,
of the various feasibility issues and results concern- or flow control unit, is the W parallel bits of infor-
ing the adaptive approach studied by the authors. mation transferred in a single cycle. The flit is the

unit used to measure the length of a packet.
*The research described in this paper was sponsored in

part by the Defense Advanced Research Projects Agency, Definition 4 Given a pair of nodes, ni and ni, the
DARPA Order number 6202, and monitored by the Office of set, Qiq, of routes joialing ni to ny is the fixed and
Naval Research under contract number N00014-87-K-0745, predetermined set of directed acyclic paths from the
t id in part by grants from Intel Scientific Computers and
Ametek Computer Research Division. source node, n-, to the destination node, ni.

Definition 5 For each destination node, ni, the T N

profitable channel set PRi 9 C, is the subset of chan- ToNh goas

nels connected to ni, where ch E Rij =ý ch GEqm %
Qi. In other words, forwarding a packet along theU
routes in Q~i is equivalent to sending it out through
a profitable channel in Ri. Processor

Definition 6 For each node ni G N, the Routing
Relation R={((n,,ck) :nj E N-n}c Router
defines for each possible destination node ni E N /
its corresponding profitable channel set, .. J-. I

Definition 7 The actual path a packet traverses
while in transit in the communication network is re-
ferred to as the trajectory of the packet. Packet tra- Mernnety
jectories are identical to the packet routes in obliv-
ious routing schemes but are non-deterministic in Message IIour adaptive formulation. Interface

We assum, the following:

"* Long messages are broken into packets that are Figure 1: Structure of a node.

the logical data entities transferred across the Internally, the communication subsystem consists of
network. an adaptive control and a small number of message-

"packet buffers. Routing decisions are made by thePackets are of fixed length; ie, packet length adaptive control, based entirely on locally available
SL, where L is a network-wide constant. information. The bidirectional channel assumption

" Complete routing information is included in the is adopted to allow the network to exploit locality in
header flit of each packet. general message-communication patterns. Further-

more, it assures an identical number of input and

" Packets are forwarded in virtual cut-through output communication channels in each node, irre-
style. spective of the underlying network topology. The I

fixed-packet-length assumption is not essential and
" A message packet arriving at its destination can be replaced by a bounded-packet-length assump-

node is consumed. This is commonly known tion; ic, packet length < L, without invalidating any
as the consumption assumption. of our major results. It is adopted solely to simplify

our subsequent exposition.
" A node can generate messages destined to any o

other node in the network. Communication Deadlock Freedom I
In any adaptive routing scheme that allows arbi-

"* Nodes can produce packets at any rate subject trary multipath routing, it is necessary to assure
to the constraint of available buffer space in the freedom from communication deadlock. Communi-
network, and packets are source queued. cation deadlock is caused generically by the exis-

"* Each node in the network has complete knowl- tence of cyclic dependencies among communication

edge of its own routing relation, resources along the message routes. Methods to pre-
vent communication deadlock have been intensively

Figure 1 presents our view of the structure of a node researched and many schemes exist; of these, the
in a multicomputer network. Conceptually, a node methods of structured buffer pools 71 and virtual
can be partitioned into a computation subsystem, channels [81 are representative. In essence, all of
a communication subsystem, and a message inter- these methods approach the problem by re-mapping
face. For our purpose, the computation subsystem any dependency that is potentially cyclic into a cor-
serves as the producer and consumer of the mes- responding acyclic dependency structure. These
sages routed by the communication subsystem of methods employ restructuring techniques that re-
the node. The message interface consists of dedi- quire information of a global, albeit static, charac-
cated hardware that handles the overhead in send- ter. In contrast, a very simple technique that is in-
ing, receiving, and reassembling of message packets. dependent of network size and topology, through vol- I

2

__ __ * Vi - input event from the communicating
_O ut ChwW Data partner indicating that the data flit values cur-

<: P~qut for Ou %RRi R rently asserted at the input channel of this node

OAWtData V R C R. are V-J.id and the node should latch in the held

kvt A.non, a We proceed to define our handshaking protocol

Rq-u-s--t---r-. across channels of a node nk E N, in a CSP-like
Vi Vi notation '10]:SInp.A Chotnnel Dotc

Inpu Chw el D ta 1 R 0 V c E C h, Jrf1; apply out data;
V,,; [Vc E Ck, Vci); latch in data;

Figure 2: Two-phase protocol signaling.
Observe that &0 and V. denote, respectively, the

untary misrouting, was suggested in [9] for networks unique outgoing Ready and data Valid signaling
that employ data exchange operations. Such a pre- event to all neighbors of nk. This enforces the
emption technique utilizes only local information, matching of outgoing data rates. On the other hand,
and is dynamic in character. It prevents deadlock the matching of incoming data rates is enforced
by breaking the potentially cyclic communication de- through the synchronized wait for the Rf and ViC
pendencies into disjoint paths of unit length. Vol- signalinL events from all neighbors. The handihak-
untary misrouting can be applied to assure deadlock ing events &o, R' interlock with-the events V0 , Vic to
freedom in cut-through switching networks, pro- guarantee the stability and strict alternation of each
vided the input and output data rates across the other. The initial state of a channel has both direc-
channels at each node are tightly matched. A sin- tions of the channel ready to accept a new data flit
ple way is to have all bidirectional channels of the and proceeds thereafter in a demand-driven fashion.
same node operate coherently under the protocol de- Figure 2 shows a possible conceptual realization of
scribed next. the protocol under the two-phase signaling conven-

The Coherent Protocol. We now describe the tion [1i] popular for off-chip communication. Since

channel data-exchange protocol in detail. It is used all the handshaking events defined are local between

to match the transfer rates across all channels of the nearest neighbors, a network following the coherent

same node. The protocol employs four control sig- protocol is arbitrarily extensible.

nals per channel, two from each of the communicat- Observe that under cut-through switching, a packet
ing partners, and is completely symmetric between can span many different channels. An outgoing
the partners. The signaling events for a channel channel occupied by a packet may not be able to
c E C are: assert Vo, until after valid data has been asserted

eR - 2utput event to the communicating part- by the corresponding incoming channel occupied by

ner indicating that this node is Ready to ac- the packet, hence, induces matching of data rates

cept another input flit from its partner. It also across the two occupied channels. The notion of co-

serves as an acknowledgment to its partner for herency introduced here is a natural way to accom-

the successful completion of the previous trans- modate such potential dependencies among the var-

fer cycle. ous channels of a node under cut-through switching.
Another notion that arises naturally is that of a null

SRiO -- input event from the communicating flit. To effect a transfer of data in one direction of

partner indicating that the partner is R.eady a channel while the opposite direction is idle, theto accept another output flit from this node. It receiving partner is required to transmit a null flit
is also an acknowledgment from the partner for in order to satisfy the convention dictated by the

the successful completion of the previous trans- exchange protocoL
fer cycle. Deadlock Freedom. We now demonstrate that

to assure communication deadlock freedom for net-
* V, - output event to the communicating part- works operating under the coherent protocol, it is

ner indicating that the data flit values currently sufficient to employ voluntary misrouting to prevent
held at the output channel of this node are potential buffer overflow. To proceed, observe that
Valid and its partner should latch in the held routing under the cut-through switching model im-
values, poses the following integrity constraints:

3

I

with their header flits transmitted first. In par- A A
ticular, voluntary misrouting of any internally H B H 8
buffered packet must start from the header flit G C G C
of the selected packet. F Q F

E E

2. Once the flit stream of a packet has been as- 01
signed a particular outgoing channel, the as- 2 3
signment must be maintained for the remaining
cycles until the entire packet has been transmit-
ved. 4

These constraints exist because all of the necessary A
routing information of a packet is encapsulated in P HHI
the packet header. Interrupting a packet flit stream G C G C

mid-transfer would render the latter part of the FD
packet undeliverable. To establish deadlock free- E

dom, it is sufficient to show that each node can inde-
pendently complete each transfer cycle and initiate a
new one, in a bounded period, without violating the Figure 3: Livelock due to bad assignments.
stated constraints. We now show that as long as we
have an equal number of input and output channels Since the validity of the above proof does not depend
per node, a condition satisfied readily by our bidi- on a node's storage capacity, deadlock freedom is
rectional channel assumption, we can always satisfy established independent of the amount of available
the stated logical requirements, and, hence, assure buffer space. The simple criterion of having an equal
freedom from communication deadlock, number of input and output channels is sufficient to

Theorem 1 Let M denote a coherent multicom- assure deadlock freedom for a coherent network. In

puter network where each node has an equal number practice, additional buffers are needed in order to I
of input and output channels. If M employs volun- inject packets into the network, and to improve the

tary misrouting to prevent potential buffer overflow, network performance.

then it is free from deadlock. Network Progress Assurance I
Proof. We need to show that buffer overflow can The adoption of voluntary misrouting renders com-
always be prevented by misrouting without violat- munication deadlock a non-issue. However, misrout-

ing the cut-through switching integrity constraints. ing also creates the burden to demonstrate progress I
We proceed with a counting argument: Let d de- in the form of message delivery assurance. In par-
note the number of channels at a node. During a ticular, a network can run into a livelock. Consider

protocol cycle, there may be as many as n* < d new the sequence of routing scenarios depicted in fig- I
data flits arriving at the input channels. A frac- ure 3 for a bidirectional ring consisting of eight nodes
tion of these, 0 < n' < n*, are new header flits; and eight packets. Eack of the packets consists of
the remaining n* - n' are non-header flits of arriv- four data flits that span multiple channels and inter-
ing packets. Of these non-header flits, a fraction nal buffers. Suppose the nodes employ the follow-
of them, 0 < n" < n* -rn', belong to packets that ing simple, deterministic, packet-to-channel assign-
have already been assigned output channels, and the ment rule: Whenever two incoming packets both
remaining n* -n'-n" flits belong to waiting pack- request the same outgoing channel, the packet from I
ets that are buffered inside the node. Therefore, the clockwise neighbor always wins. Given that, ini-

the node has at least a total of n' + (n* - n'- r,') tially, nodes A, C, E, and G each receive two pack-
headers flits that are eligible for immediate routing. ets destined to nodes that are, respectively, distance

Hence, in the following cycle, a node can find at least two from them in the clockwise direction, after four

nl+(n*-n t-n")+n" = n" flits that can be transmit- routing cycles, the packets are all back to where they
ted or misrouted without violating the cut-through startedl This example illustrates that packets can

switching integrity constraints. This assures that be forever denied delivery to their destinations even
no buffer overflow will occur. The node can always in the abse.ce of communication deadlock.
complete its protocol cycles in bounded time; hence,

the network is free from deadlock. M 1

4I

3. Except as stated below, a buffer can be occu-

A A pied by only one packet at a time. Oftentimes a
H B H Spacket may not fill its entire buffer, as in case of

G c Gc a partial cut-through. Such a packet occupies

F Q F o both the input and output ports to the buffer.
E E

S0 4. A buffer can be used temporarily to store two
4 1 packets at a time, if and only if, one of them

is leaving through the output port connected
to an output channel, and the other is entering
through the input port connected to an input
channel.i Let b and d denote, respectively, the number of

C c buffers and channels, ie, the degree at each node.
F .F D First, we observe that, given the above buffering

discipline, we must have b > d. To see this, assume
N :ý v that L > d, and consider the following sequence of

events at a node with all buffers initially empty: At
r 4cycle t = 0, a packet Po arrives and is forwarded

to its requested output channel c* at cycle t = 1.

Channel-access competitions are, however, not the Then, at cycles t = L-d up to t = L-2, a total of
only type of conflict that can lead to livelock. Con- d- 1 packets, Pi, i =,... , d- 1, arriving one after

sider the situations depicted in figure 4 for the same another in these d-1 consecutive cycles, all request-
bidirectional ring network. The traffic patterns are ing the same output channel c*. Finally, at cycle
coincidental in such a way that none of the pack- t = L + 2, another packet Pd arrives, requesting theU ets will ever have a chance to select its own output same channel c*. The worst case happens when the
channel; rather, at every node, each packet must be assignment algorithm always favors the latest arriv-
forwarded along the only remaining channel, in com- ing packet requiring it to stay and avoid preemption,
pliance with the voluntary misrouting discipline, in and having each occupy a distinct buffer. Given the

order to avoid deadlock. It is clear that no matter above arrival sequence, at cycle t = L + 1, packet
what assignment strategy one chooses, it is impos- Pd-1 will be forwarded through c*, which now be-
sible to break this kind of livelock without adding comes idle. As a result, each packet from P1 up to

extra buffers per node. In other words, additional Pd would have to be temporarily stored as it comes

measures and resources have to be introduced in or- in. Since each packet must be allocated to a dis-
der to assure progress, ic, delivery of packets, in the tinct buffer, we must have b >_ d. We now show that
network, having b = d buffers is also sufficient.

Buffering Discipline and Requirement. In or- Theorem 2 Let M be a coherent network where

der to assure packet delivery in spite of voluntary each node has b packet buffers inside the router op-
misrouting, extra buffers are required to store pack- erating under the stated assumptions. Then b = d
ets temporarily. In particular, sufficient buffers buffers per router is necessary and sufficient to al-

must be provided to allow the adaptive control to ways allow at least one packet, chosen arbitrarily by
give any newly arriving packet a chance to escape the assignment algorithm at each node, to escape
preemption if so determined by the assignment al- preemption.
gorithm. We now demonstrate the existence of such Proof. Necessity follows immediately from the
a solution using a bounded number of buffers. We preceding discussion. We proceed to establish suffi-
assume the following buffering discipline: ciency through a counting argument. Observe that

1. Storage is divided into buffers of equal size; each a node is required to consider misrouting of packets

is capable of holding an entire message packet. in the next cycle only when there are new packets
arriving at the current cycle. Figure 5 depicts an

2. Each buffer has exactly one input and one out- accounting of all possible cases of buffer allocation

put port; this permits simultaneous reading and at the end of any such routing cycle. Let n, up to
writing. A good example is a FIFO queue of n7 denote, respectively, the number of packets or
length L. buffers in each case; and no denote the number of

I5

I

n 1 Dect Cut-throuqh by the assignment algorithm will have the chance toDirect Cut-Through _ follow the actual paths determined by the routing
n2 yrelations. In a sense, assurance of picket deliveryn3 BufdHeer has now been reduced to that of picking coansitent

Prtill Bferwinners across the network.
n4 I IM I I 11tPacket-Priority Assignments. An effective

o5 scheme for picking consistent winners that is inde-
pendent of any particular network topology is ton6 10- resolve the channel-access conflicts according to a l

n7 _ 111priority assignment. In particular, the process of
forwarding a packet towards its destination can be
viewed as a sequence of actions performed to re-

Figure 5: Accounting of buffer allocations. duce the packet's distance from destination, pro-
vided that the set R = {R(} of routing relations is

newly arrived packets. Then, for inputs, we have defined in terms of an underlying metric of the net-

no + n6 + n6 + n+ 7 < d; for outputs, we have work. In this case, as the result of a channel-access
fle + gd + pce + csn b d. Let Pa denote the privi- conflict, the winner will be routed along a profitable
leged packet chosen by the assignment algorithm to channel, hence decreasing its distance from the des-
stay behind and avoid misrouting in the following tination. The losers, depending on whether they are
cycle. P must be either a newly arrived packet misrouted along the remaining unprofitable chan-
or an already buffered packet. If P is a buffered nels, may or may not increase their distance from
packet, then a newly arriving packet either finds destination. Ideally, one would prefer a strict mono-
an idle output channel to directly cut through the tonic decrease of distance to destination for each

no e; no+ en3 which, in turn, implies that there packet routed in the network. As this is impossi-
will always be + n, avila, i btufr, irplea thaccept tble under our adaptive model, the alternative is to
will always be an available buffer ready to accept ensure monotonic decrease over a sequence of ex-
it. On the other hand, if P* is a newly arriv- changes involving multiple packets. This can beI

ing packet, then either n4 + ns > 0, and, hence, achieved by giving higher priority to packets with

there is a buffer ready to accept it; or else we must shorter distances from destination over those with

have n2 +n 3 +n 0 +n7 = b = d. This, together with longer distances as follows: o

the above inequality on inputs, =€- n 2 _> n0 +n l = l

n 2 > 0. Furthermore, no > 0 n= +n6+n < d. P1 > P2 4=* D, < D2
In other words, the packet will be able to find at where P is a packet's priority and D its distance
least one buffer with a full idle packet as well as an from destination. We now show that this is sufficientidle output channel to preempt this idle packet and
thus make room for itself. This establishes the suf-
ficiency condition. N Theorem 3 A packet-to-channel assignment strat-

egy that observes the defined distance priority, to-
The trick in allowing the escape of misrouting for gether with the set 2 of metric-based routing rela-
any arbitrarily chosen packet is to provide at least tions, guarantees livelock freedom in'a network.
a critical, minimum number of buffers that is suffi- Proof. At th• beginning of a routing cycle, let
cient to assure either that empty buffers still exist, D > 0 be the minimum packet distance from desti-
or that all buffers have been occupied, and, hence, nation. During this cycle, a packet with distance D
there is some other packet that can be misrouted in- competes with other packets for channels leading to I
stead. The particular number required depends on its destination. If it wins the competition, it will be
the adopted buffering structure and discipline, and forwarded along a profitable channel within L cy-
adding more buffers per node will allow the assign- cles. It it loses, it must be to another packet also
ment algorithm to operate with more flexibility and distance D away from its destination, according to
perform better. In any case, by having a sufficient the defined priority. In both cases, the minimum dis-
number of buffers, competition of profitable channel tance is reduced to < D within L cycles. Therefore,
access is transformed into a competition for the right D will eventually be reduced to zero, in which case
to stay behind and wait until the winner's profitable a successful packet delivery occurs and the above
channel becomes available, at which time, it will be argument can be applied again to assure repeated
forwarded. Hence, winners that have been chosen deliveries. This establishes livelock freedom. U I

6

Re g Bufe passing traffic is loaded into the cut-through buffer,
which is normally connected to the output channeL

_. eat.,atio Whenever the cut-through buffer becomes empty,
-|o_,IL.k the control logic checks to see if there is an output

packet waiting for injection. In such case, the switch

_0 S~f~ __is toggled so that the output channel is connected to
_ _ _ _ __it ____ _- To O C the injection buffer and the injection proceeds. AsU .the output packet is being forwarded, any passing

F rI= Plocesw/Umefoy traffic is loaded into the cut-through buffer. The
I rom switch connection is flipped back to the cutthrough

To Proe'/Menr, buffer after injection has been finished, and the pro-
Figure 6: Inside the message interface. cess repeats. The main interesting property of the

message interface for our current discussion is that
Observe that although the distance priority alone it provides the mechanism to capture and accumu-
suffices to guarantee global progress in a message late interpacket gaps, which need not be contigu-
network, no corresponding statement can be made ous, as empty spaces inside the cut-through buffers.

concerning each individual packet. This is because When enough space has been collected, ie, the en-
it is possible for packets that are far away from their tire packet length, hence, an entire empty buffer, an-
destinations to be repeatedly defeated by newly in- other new packet can be injected into the network.
jected packets that are closer to their respective des- With such a mechanism, the question of assuring
tinations. A more complex priority scheme that as- eventual packet injection is translated into that of
sures delivery of every packet can be obtained by assuring arrival of enough interpacket gaps when-
augmenting the above simple scheme with age in- ever a node has a packet injection outstanding.
formation, with higher priorities assigned to older Round-Trip Packets. One simple way to assure
packets: network access is to have each packet delivered by

, Dthe network be returned to its original sender upon
(A(,D,) > (A2 , D2) V(== A < arrival at its destination. Since each message inter-

(A1 > A2) v ((A1 = A2) A (D1 <D2)) face starts with an empty injection buffer, consump-

where A is a packet's age, that is, the number tion of its own round-trip packets will always restore

of routing cycles elapsed since the injection of the its ability to inject the aext source-queued packet.

packet. Empirical simulation results indicate that More sophisticated versions of such a scheme will use

the simple distance assignment scheme is sufficient several cut-through buffers, and will demand that

for almost all situations, except under an extremely packets be returned only if the stock of empty cut-

heavy applied load. through buffers has been depleted below a predeter-
mined threshold. In this way, the number of round-

Network-Access Assurance trip packets can be dramaticaily reduced when traf-
A different kind of progress assurance that requires fic is relatively moderate. Unfortunately, as traffic
demonstration under our adaptive formulation is the density increases, the population of round-trip pack-

ability of a node to inject packets eventually. Be- ets also increases, thus further decreasing useful net-
cause of the requirement to maintain strict balance work bandwidth.
of input and output data rates, a node located in
the center of heavy traffic might be denied access Packet-Injection Control. A different scheme
to the network indefinitely. Figure 6 depicts a pos- that does not incur this overhead is to have the
sible conceptual realization of a message interface nodes maintain a bounded synchrony with neigh-
Its operation is similar to the register insertion ring bor on the total number of injections. Nodes that
interface described in [121. It uses two FIFO buffers fall behind will, in effect, prohibit others from in-
that can be connected to the output channel to- ctnventil theatc u We shal n adopt the
wards the network via a switch. Whenever the node convention that a node having no packet to inject
has a packet to transmit, it loads the packet into has a null packet queued up; has, during each rout-
the injection buffer as soon as the buffer becomes ing cycle, every node either has a null or real packet
empty. When message traffic arrives from the net- ready to inject or else is in the process of inject-
work input channel, it passes through the destina- hig a real packet. The null-packet convention is re-
tion check logic, which redirects any traffic destined quired to prevent quiescent nodes that do not have
to this node to the node memory. Any remaining any packet to inject from blocking injections in the

I7

II

active nodes. Our scheme is to introduce local syn- 16 X 16 2D Mesh 1
chronization among neighboring nodes such that the 1.0
total number of packets, injected by a node after 0.8 Adaptiv.

each routing cycle will not differ by more than K, I
a positive constant, from those of its neighbors. We 0.6

assume that each node explicitly maintains records 0.4 Oblivious

of the total number of packet injections made by 0.each of its neighbors, measured relative to that of 0.2
its own, and that the information required to up- 0.0o

date these records in each node is exchanged on 0.0 0.2 0.4 0.6 o.8 10
separate direct links between the message interfaces I.
among neighbors. A node is allowed to inject its
queued packet only if its own number of total in- Figure 7: Throughput verus applied load.
jections is fewer than K packet injections ahead of n, hence establishing the validity of the lemma. N II
its minimum neighbor. Nodes that are allowed to
inject will examine their queued packets. Null pack- We are now ready to show that by following the
ets are always injected by convention, whereas real above injection protocol every individual node will In
packets are injected only if the injection mechanism eventually be permitted to inject, and, hence, ac-
described previously finds at least one empty buffer cording to the above lemma, will eventually inject.
available to absorb the injection transient. We now Specifically, let M be a network, and let Ti de-
show that, with eventual delivery of the packets al- note the total number of packet injections from node U
ready injected, this injection synchronisation proto- ni E N since initialization. We now prove that Ti is
col establishes cooperation among the nodes to as- strictly increasing over time.
sure the eventual occurrence of empty cut-through Theore 5 Given the injection protocol and a fi-Ibuffers in the message interface for nodes that have nite network that is livelock free, the total number
real packets waiting for injection as permitted by of netw that.is for e e, noe totl ncrerthe protocol of packet injections for each node strictly increases

over time.
Lemma 4 A node that has a packet waiting for in- P During a routing cycle, let t = iflniEN Ti
jection that is permissible under the above injection denote the minimum among numbers of packet in-
protocol will eventually inject. jections since initialization, taken over ah the nodes
Proof. Observe that, by convention, if the pend- of the network, and let S = {ni E NIT, = t} de-
ing packet is null, the node is able to inject imme- note the set of nodes that have recorded the min-

diately, so that the lemma is true vacuously. We imum number of packet injections since initializa- I
now proceed to establish its validity for real packets. tion. Since K > 0, according to our protocol, every
Suppose, to the contrary, that a particular node, node n E S is permitted to inject. Lemma 4 then

n E N, is blocked from injection indefinitely be- guarantees eventual injections from all of the nodes I
cause the injection mechanism cannot accumulate in S; hence, t, the minimum number of packet injec-
sufficient empty buffer space to absorb the injection tions per node, is guaranteed to eventually increase
transient. Our injection protocol then dictates that over time. This, in turn, guarantees that Ti strictly
its neighbors also will be blocked indefinitely from increases over time, Vni E N. U 1
injecting. These, in turn, indefinitely block their Hence, we are assured of eventual packet injection
neighbors, and so on. Given a finite network, all Heach we ia l node of e net work. Inje r
nodes are eventually blocked from any further in- for each individual node of the network. In other Ijection, and eventually no new packet can enter the words, the above theorem establishes fairness in net-
network. Given the eventual delivery guarantee for work access among all the nodes.
packets already injected, ultimately the network will Performance Comparisons
be void of packets; at that point, the input channel An extensive set of simulations was conducted to
to the interface of n will become idle, thus enabling obtain information concerning the potential gain in
it to resume the accumulation of empty spaces in- performance by switching from the oblivious worm-
side the cut-through buffer. Eventually, it will have hole to the adaptive cut-through technique. We now
collected enough spaces to enable the injection of summarize very briefly the typical kind of behaviors
its queued packet into the network. This contra- observed in these simulations. A much more de-
dicts the original indefinite blocking assumption of tailed discussion can be found in [5]. Among the I

81

16 X 16 2D Mesh olution mechanisms gives us hope that the adap-

400 tive shcheme can be made to improve on the already
highly evolved oblivious routing scheme. The dis.

300 Adaptive/ cussion in this paper has focused on issues concern-

200 ing the feasibility of the proposed adaptive routing
Sframework. Within this framework, we have also

100 studied and found pr mising approaches to fault-
-- _ tolerant routing. Clearly, more work remains to be

0 . .3. ... done. Perhaps the most challenging of all is to real-0.1 0.2 0.3 0.4 0.6 0.e 0.7 0.8

Throughput ise on silicon, the set of ideas outlined in this study.
References

Figure 8: Message latency versus throughput. [I] Charles L. Seitz, "The Cosmic Cube," CACM,

various statistics collected, the two most important 28(1), January 1985, pp. 22-33.

performance metrics in communication networks are [2] William C. Athas and Charles L. Seitz., 'Mul-
network throughput and message latency. Figure 7 ticomputers: Message-Passing Concurrent Corn-

plots the sustained normalized network throughput puters," IFM Computer, August 1988, pp. 9-24.

versus the normalized applied load of the oblivious [3] William J. Daily and Charles L. Seitz, *The Torus
and adaptive schemes for a 16 x 16 2D-mesh network Routing Chip,* Distributed Computing, 1986(1),
under random traffic. The normalization is per- pp. 187-196.

formed with respect to the network bisection band- 14] Charles M. Flaig, VLSI Mesh Routing Systems.
width limit. Starting at a very low applied load, the Caltech Computer Science Department Technical
throughput curves of both schemes rise along a unit Roport, 5241:TR:87.

slope line. The oblivious wormhole curve levels off at [5] John Y. Ngai, Adaptive Routing in Multicom-
s 45 -- 50% of normalized throughput but remains puter Networks. Ph.D. Thesis, Computer Science
stable even under increasingly heavy applied load. Department, Caltech. To be published.
In contrast, the adaptive cut-through curve keeps L61 P. Kermani and L. Kleinrock, "Virtual Cut-
rising along the unit slope line until it is out of the Through : A New Computer Communication
range of collected data. It should be pointed out, Switching Technique," Computer Networks 3(4)

however, that the increase in throughput obtained pp. 267-286, Sept. 1979.

is also partly due to the extra silicon area invested in [7] P. Merlin, and P. Schweitzer, 'Deadlock Avoid-
buffer storage, which makes adaptive choices avail- ance in Store-and-Forward Networks - I : Store-
able. and Forward Deadlock," IEEE Transactions on

Communications, Vol. COM-28, No. 3, pp. 345-
Figure 8 plots the message latency versus normal- 354, March 1980.
ized throughput for the same 2D-mesh network for [8] William J. Daily and Charles L. Seitz, 'Deadlock-
a typical message length of 32 flits. The curves Free Message Routing in Multiprocessor Intercon-

shown are typical of latency curves obtained in vir- nection Networks," IEEE Transactions on Com-
tual cut-through switching. Both curves start with puters, Vol. C-36, No. 5, pp. 547-553, May 1987.
latency values close to the ideal at very low through- [9] A. Borodin, and J. Hopcroft, "Routing, Merging,

pidt, and remain relatively flat until they hit their and Sorting on Parallel Models of Computation,"
respective transition points, after which both rise Journal of Computer and System Sciences, 30, pp.
rapidly. The transition points are P 40% and 70%, 130-145 (1985).
respectively, for the oblivious and adaptive schemes. 110] Aiain J. Martin, "A Synthesis Method for Self-
In essence, adaptive routing control increases the timed VLSI Circuits," Proc. 1987 IEEE Inter-
quantity of routing service, is, network throughput, national Conference on Computer Design: VLSI
without sacrificing the quality of the provided ser- in Computers & Processors, IEEE Comp. Soc.
vice, is, message latency, at the expense of requiring Press, pp. 224-229 (1987).
ir : 5ilicon area. [11] Charles L. Seitz, "System Timing," Introduction

S Summary to VLSI Systems, C. Mead & L. Conway, Addison-

Several issues related to adaptive cut-through rout- Wesley, 1981), Chapter 7.

ing have been addressed in the course of this re- (121 M. T. Liu, "Distributed Loop Computer Net-

search, and we did not encounter any insurmount- works," Advances in Computers, M. Yovits, Aca-

able problem. Rather, the simplicity of these res- demic Press, pp. 163-221, 1978.

9

I SUBMICRON SYSTEMS ARCHITECTURE PROJECT

i ~ Department of Computer Science

California Institute of Technology

Pasadena, CA 91125

i
I

Semiannual Technical Report

]
I

Caltech Computer Science Technical ReportI Caltech-CS-TR-88-18

i 9 November 1988

The research described in this report was sponsored by the Defense Advanced Research

Projects Agency, DARPA Order number 6202, and monitored by the Office of Naval

I Th[eerhdsrbdi hsrpr a sosrdb h ees dacdRsac

SUBMICRON SYSTEMS ARCHITECTURE

Semiannual Technical Report

Department of Computer Science

California Institute of Technology

Caltech-CS-TR-88-18

9 November 1988

Reporting Period: 1 April 1988 - 31 October 1988 (7 months)

Principal Investigator: Charles L. Seitz

I Faculty Investigators: William C. Athas

K. Mani Chandy

Alain J. Martin

Martin Rem

Charles L. Seitz

Stephen Taylor

I

Sponsored by the
Defense Advanced Research Projects Agency

DARPA Order Number 6202

Monitored by the
Office of Naval Research

Contract Number N00014-87-K-0745I
I

| | II

SUBMICRON SYSTEMS ARCHITECTURE I
Department of Computer Science
California Institute of Technology

1. Ove - iew and Summary

1.1 Scope of this Report

This document is a summary of the research activities and results for the seven-
month period, 1 April 1988 to 31 October 1988, under the Defense Advanced
Research Project Agency (DARPA) Submicron Systems Architecture Project.
Previous semiannual technical reports and other technical reports covering parts
of the project in detail are listed following these summaries, and can be ordered
from the Caltech Computer Science Library.

1.2 Objectives

The central theme of this research is the architecture and design of VLSI
systems appropriate to a microcircuit technology scaled to submicron feature sizes.
Our work is focused on VLSI architecture experiments that involve the design,
construction, programming, and use of experimental message-passing concurrent
computers, and includes related efforts in concurrent computation and VLSI design.

1.3 Changes in Key Personnel

Dr. William C. Athas completed his appointment as a Postdoctoral Research Fellow
in Computer Science in August 1988, and has joined the faculty at the University
of Texas at Austin as an Assistant Professor of Computer Science. Dr. Stephen
Taylor, a new PhD from the Weizmann Institute of Science and the author of
a multicomputer implementation of flat concurrent prolog, joined the project in
September 1988 with an appointment at Caltech as an Instructor in Computer I
Science. I

I
I
I

-1- I

I

2. Architecture Experiments

2.1 Mosaic Project

Bill Athas, Charles Flaig, Glenn Lewis, Jakov Seizovic, Don Speck, Wen-King Su,
Tony Wittry, Chuck Seitz

The Mosaic C is an experimental multicomputer with single-chip nodes, currently in
development. The stipulation that the nodes fit on a single chip so limits the storage
for each node that relatively fine-grain concurrent programming techniques must be
used. The Mosaic C will be programmed using the Cantor programming language,
a fine-grain object-based (or Actor) language. We are working toward building a

16K-node Mosaic system using nodes fabricated in 1.2jsm CMOS technology, with
a near-term milestone of a 1K-node system using nodes fabricated in 1.611m CMOS.

Much of our effort in this period has been concentrated on the Mosaic C project.
The following is a brief summary of these activities (See also sections 3.1 & 4.5):

1. Cantor version 2.2 has been used internally within the research group for the past
several months, and has been documented for external distribution. A technical

report describing a collection of exemplary Cantor 2.2 programs that range up
to 15 pages of program text in length was published. The report also reports
the rationale for many of the design decisions in the evolution of Cantor from
version 2.0 to 2.2.

2. Our initial implementation of a Cantor code generator for the Mosaic C indicated
that only a simple procedure call mechanism was required; otherwise, the Mosaic
C instruction set has been an efficient target for code generation. Work has
commenced on a final Cantor code generator and runtime system for the Mosaic.

3. In accordance with the studies of code generation, the microcode for the Mosaic
C processor was revised to implement an instruction set having a simpler
procedure-call mechanism, together with several other minor refinements. The
simplification of the instruction set reduced the number of implicants in the
microcode that controls the processor from 66 to 102. The impact of this
simplification on the processor area is merely favorable; its greatest benefit is
in improving the processor speed (the RISC effect).

4. The entire processor was simulated at the clock-cycle and microcode level
to debug and verify the microcode. The verified microcode was then used
to generate a PLA structure, which was tied to the Mosaic C datapath for
switch-level simulation and verification of the entire processor. A hybrid
static/precharge PLA was designed to maximize the performance, and will be
used in the final version of the processor.

5. An interface between the router and memory was designed, laid out, and
verified by switch-level simulation. This final section of the Mosaic C single-

-2-

i

chip multicomputer node also includes the arbitration for memory refresh and I
memory access.

Fabrication of the first prototype processors and full Mosaic elements is now
anticipated for early CY1989.

2.2 Second-Generation Medium-Grain Multicomputers*

Chuck Seitz, Alain Martin, Bill Athas, Charles Flaig, Jakov Seizovic, Craig Steele,
Wen-King Su

Deliveries of the first production models of the Ametek Series 2010, a second-
generation medium-grain multicomputer developed as a joint project between our
research project and Ametek Computer Research Division, took place in this period.
The reports we have received have been favorable. One customer who is also a
DARPA contractor had developed 10,000+ lines of source code using the Cosmic
Environment prior to taking delivery of the Ametek 2010, and apparently ported
this code in a few days with no difficulties.

Additional benchmarks on the Ametek Series 2010 continue to show that it runs i
8-10 times faster per node than such first-generation machines as the Intel iPSC/1.

Copies of the Cosmic Environment system have been distributed to approxi--
mately an additional 35 sites in this period, bringing the total copies distributed
directly from the project to over 150. In addition, source copies of the Reactive
Kernel node operating system were provided to two government contractors who I
are purchasing Ametek 2010 systems. An article titled "Multicomputers: Message-
Passing Concurrent Computers" was published in the August 1988 issue of IEEE
COMPUTER. This article on the current status of the multicomputers that have
developed out of the work of our research group stimulated requests for many ad-
ditional copies of "The C Programmer's Abbreviated Guide to Multicomputer Pro-
gramming" [Caltech-CS-TR-88-1].

We expect to take delivery of the first 16-node increment of a 256-node Ametek

2010 in November 1988, and also a 16-node Intel iPSC/2, which will later be
expanded to 64 nodes. Substantial blocks of time on the Ametek 2010 will be
available to guest DARPA researchers.

Our Caltech project continues to work with both Ametek and Intel on the
architectural design, message-routing methods and chips, and system software

(evolutions of the KRcactive Kernel (RK) node operating system and the Cosmic I
Environment (CE) host runtime system) for multicomputers. (See sections 3.2, 3.6
and 4.6 for details on these efforts.) We expect to see additional major advances in

the performance and programmability of these systems over the next two years. In

* This segment of our research is sponsored jointly by DARPA and by grants from

Intel Scientific Computers (Beaverton, Oregon) and Ametek Computer Research
Division (Monrovia, California).

-3- I
I

addition, we continue to develop applications in VLSI design and analysis tools, and
in other areas in which the programming of these multicomputer systems presents
particular difficulties or opportunities. (See sections 3.3-3.5 and 4.9.)

2.3 Cosmic Cube Project

Bill Athas, Wen-King Su, Jakov Seizovic, Chuck Seitz

This section summarizes the current usage and the hardware and software status
of our first-generation multicomputers, the Cosmic Cubes and Intel iPSC/1 d7.

These systems continue to operate reliably. Overall usage has been moderately

heavy. The most time-consuming application in this period from within our own
group has been a continuation of an extensive series of simulations by John Ngai
concerned with the maximal utilization of networks with faulty routers or channels
(see section ?). Supersonic flow computations being performed by students and
faculty in Aeronautics at Caltech continue as the largest share of outside use.

The 64-node Cosmic Cube exhibited a hard failure in this seven-month period,
a complete failure of its primary 5V, 130A power supply. The power supply was
replaced, and the system rebooted without any problems. Counting the power
supply failure as a single failure, the two original Cosmic Cubes have now logged 3.6
million node-hours with only four hard failures, three of them being chip failures in
nodes. Curiously, we have not encountered a single connector failure. The calculated
node MTBF of 100,000 hours reported before these machines were constructed was
extremely conservative. A node MTBF in excess of 1,000,000 hours is probable,
and can be stated at a 54% confidence level.

Our Intel iPSC/1 d7 (128 nodes) was contributed to the Submicron Systems

Architecture Project as a part of the license agreement between the Caltech
and Intel, and is accessible via the ARPAnet to other DARPA researchers
who may wish to experiment with it. To request an account, please contact
chucktvlsi.caltech.edu. The Ametek Series 2010 system to be installed later
this month will be available for outside use on a similar basis.

-4-

I

3. Concurrent Computation I

3.1 Cantor

Nanette J. Boden, William C. Athas, Chuck Seitz

Programming for Fine-Grain Multicomputers

Over the last year we have been conducting a series of fine-grain programming i
experiments using Cantor. The purpose of this series of experiments was both
to evaluate Cantor as a programming language and to investigate the nature of
fine-grain programming. Application programs that have been written in these
experiments include: fast-Fourier transform, shortest-path algorithms, a 2D convex
hull solver, R-C chain-circuit simulation, digital logic simulation, a checkmate i
analyzer, an enumerator of paraffin isomers, and many others.

As a result of these programming experiments, modifications to Cantor
have been made to facilitate fine-grain programming. Iteration internal to
objects, custom objects, functional abstraction, and one-dimensional vectors are

programming constructs that are now available in the newest version of Cantor, i
Cantor 2.2. A feature has also been added to the language to permit rudimentary
discretion over message receipts. Analysis of the programming experiments clearly

indicates that programming situations exist where some message discretion is very
useful. In addition to these modifications, unnecessary features of the original
language specification have been removed, including dynamic typing of variables.
The changes that have been made to Cantor thus enhance programming abstraction
while removing unnecessary constructs.

Using the latest version of Cantor as an experimental tool, we have written
enough programs in the fine-grain style to draw some conclusions. Although
formulations for Cantor programs are myriad, we have detected three general
paradigms for the development of fine-grain programs:

1. Functional program specifications can be mapped directly into message-driven
programs.

2. Solution specifications can be mapped into message-driven programs.

3. The object program can operate as a "logical apparatus" to solve the application

problem.

In addition to observing these paradigms, we have been encouraged by the high i
degree of concurrency that is achieved in Cantor programs and by the convenience
and generality of fine-grain programming. Based on our experiments with Cantor

thus far, we believe that large, highly concurrent programs can be efficiently
expressed in the fine-grain programming style.

-5-

I

Programming for the Mosaic

Recent research in the area of Mosaic programming has focused on the definition
and analysis of an abstract machine for the execution of Cantor code. The Cantor
Abstract Machine (CAM) definition is based on the fine-grain multicomputer
architecture, yet encapsulates operations like object creation, message sends and
receives, ete, in single instructions. The purpose of this approach is to isolate
the implementation of these complicated operations as much as possible from the
development of an efficient runtime system.

A new Cantor code generator and simulator have been written for the CAM.
Analysis of the abstract machine has already suggested improvements in the
Cantor intermediate format. In addition, simulation of program execution on the
CAM is expected to be very useful in evaluating potential Mosaic runtime system
alternatives.

3.2 The Cosmic Environment and Reactive Kernel

Jakov Seizovic, Wen-King Su, Chuck Seitz

The Cosmic Environment and Reactive Kernel continue to run reliably on the
original Cosmic Cubes and on the Ametek Series 2010, and no major changes have

been made. The internals of RK are now documented in technical report Caltech-
CS-TR-88-10.

In the original version of the RK, we were able to guarantee the weak fairness
of scheduling on a multicomputer node only if all processes on that node satisfied
the reactive property that they would eventually either terminate, or execute an
xrecvo. The producers of an infinite number of messages are an important class
of processes that do not satisfy the reactive property. A simple modification of
the implementation of the xmalloc () system call has enabled us to support the
infinite computations as well. The xmalloc () system call is implemented in terms
of the RPC mechanism. The requested buffer is not delivered immediately; instead
it is sent to the requesting process and delivered through the regular scheduling

mechanism.

3.3 CONCISE - A Concurrent Circuit Simulator*

Sven Mattisson, Lena Peterson, Chuck Seitz

Within this project, a concurrent circuit simulation program called CONCISE has
been developed. This program is a circuit simulator for transient analysis of CMOS-
circuits. It is written in C and uses the Cosmic Environment/Reactive Kernel
message-passing primitives.

* This segment of our research is a joint project between the Caltech Submicron

Systems Architecture Project and the Department of Applied Electronics at the
University of Lund, Sweden.

-6-

m

Recently, CONCISE was ported to the Ametek Series 2010. Thus, the program m
now runs on several multicomputers with loosely coupled nodes, including the
Ametek 2010 and the Intel iPSC, and on a shared memory multicomputer, the
Sequent Symmetry. The port to the Ametek 2010 showed that CONCISE is more
than eight times faster on the Ametek 2010 than on the Intel iPSC/1, which is a
typical first-generation multicomputer.

The Reactive Kernel primitives support a programming model where each
process has its own memory space. This model makes dynamic partitioning and load
balancing expensive in CPU time. Thus, we have developed a static partitioning
scheme that tries to enhance the convergence rate of the waveform relaxation
method without sacrificing the grain-size of the computational tasks. It is important
to notice that the requirements on the partitioning algorithms in this case differ from
the "traditional" parallelization, where only a few processing nodes are used.

So far, six different combinations of iteration schemes and partitioning have
been tested. The iteration schemes tested are ordinary Jacobi iterations, ordinary

Gauss-Seidel, and n-colored Gauss-Seidel. The n-colored Gauss-Seidel uses the I
incidence-degree algorithm to find a coloring with the least number of colors for the
circuit graph. Then, the different colors can be solved concurrently, since each node
has a color different from those of its neighbors. These three algorithms have all
been run with two different partitioning schemes: one in which each circuit node
forms a cluster on its own, and one where source-drain connected circuit nodes are 3
clustered together.

The results show that regular Gauss-Seidel iterations are not suitable except
for very few processing nodes, and this scheme is the most popular for sequential
waveform-relaxation implementations. Instead, the n-coloring version of Gauss-
Seidel iterations are useful for the case when the number of processing nodes is
large, but significantly less than the number of processes. The number of colors
needed usually lies between three and five.

When the number of computing nodes is close to the number of circuit nodes,
Jacobi iterations do surprisingly well. This is due to the fact that the load imbalance
gets increasingly severe for the other schemes. For some circuits, the clusters get I
very big, and splitting schemes fail in producing reasonable size clusters that still
achieve comparable convergence speed. For such circuits a hierarchical approach

where more than one node can be assigned to solving a cluster would be desirable. I
Such an approach will be possible with the faster message passing of the second-
generation multicomputers, and experiments in this area are presently being carried

out.

In another effort, Concise has been used by Anthony Skjellum in the Chemical
Engineering Department at Caltech for the simulation of distillation columns. This I
work has shown that it is possible to use Concise to simulate dynamic systems that

-7- I
I

are not at all like circuits. As part of this effort, Concise has been modified to make
it easier to install models of other kinds of "devices."

3.4 Variants of the Chandy-Misra-Bryant Distributed Discrete-Event

Simulation Algorithm

Wen-King Su, Chuck Seitz

A new and more versatile logic simulator has been written in the past six months
to better evaluate a more diverse set of conservative variants of the Chandy-
Misra-Bryant (CMB) distributed discrete-event simulation algorithm. Most of
the conclusions from this study are included in the paper "Variants of the
Chandy-Misra-Bryant Distributed Discrete-event Simulation Algorithm," accepted
for publication in the 1989 SCS Eastern Multi-conference. The primary conclusions
are that the variants examined are similar, in that all of them take an initial penalty
running on a single node in comparison with sequential event-driven simulators
that exploit an ordered event list. The penalty is due to the generation and
the processing of null messages. However, as the number of processing nodes
increases, the simulation time decreases linearly until all usable concurre, cy has
been exhausted. Depending on the circuit being simulated, the crossover point (the
point at which the time taken by the concurrent simulators drops below the time
taken for the sequential simulator) has been observed to be anywhere between four
and 200 nodes.

After the paper was submitted, a new simulator variant was written to try to
reduce the initial overhead by combining sequential simulation methods with the
concurrent simulator variants. The resulting simulator has the performace of a
sequential simulator for the single processor case, and it converges with that of the
concurrent simulator when the number of nodes is sufficiently large. However,
the nature of the logic circuit being simulated strongly influences the rate of
convergence. We have observed all three cases:

I 1. The simulation time humps upward toward that of the concurrent simulators as
soon as the number of processing nodes is increased beyond one.

I 2. The simulation time remains the same until the concurrent-sequential crossover
point.

* 3. The simulation time starts to decrease as soon as the number of nodes are
increased, but the drop is less than linear.

A conclusion of this study is that very-high-performance logic simulation on
concurrent computers is completely plausible for systems with very large numbers
of nodes, where the CMB null-message scheme is fully exploited. Conversely, it
is efficient for small-N systems only when the elements being simulated are more
complex and have longer running times than logic elements.

-8-

I

I

3.5 Automatic Mapping of Processes and Channels

Drazen Borkovic, Alain Martin

To facilitate programming of message-passing machines, we have developed a I
preprocessor, map3 , that allows for*a certain level of abstraction in the mapping
of processes and channels on the nodes and physical channels of a message-passing
multicomputer.

The description of a set of processes and the channels between them has been
compiled into a set of C functions that perform the mapping of the processes onto
physical nodes of the target machine. The preprocessor supports a hierarchical
organization of processes and local names for the channels. There is also a set of
library routines that can emulate channels with arbitrary slack.

The preprocessor and the library routines have been successfully implemented
and tested under the Cosmic Environment/Reactive Kernel system.

3.6 A Multicomputer "Page Kernel"

Craig S. Steele, Chuck Seitz

As described in a previous report, an experimental "page kernel" is being developed
that uses memory-access-protection mechanisms as the interface to multicomputer
message subsystems. A prototype of the "page kernel" is now running on a
sequential machine. The current code is simulating the memory-management I
hardware of the Ametek Series 2010 computing node, and will be ported to the
Series 2010 shortly.

The page kernel supports dynamic load-balancing and process relocation. The
kernel's ability to transparently update copies of data distributed across a multi-
node system is particularly well-suited for chaotic iterative programs, such as
process-placement optimization.

I

I
I
I

.. II

I

4. VLSI Design

4.1 Testing Self-Timed Circuits

Pieter Hazewindus, Alain Martin

We are investigating methods to test self-timed circuits. Traditionally, it is thought
that these circuits are hard to test because of the possibility of races and hazards,
and because these circuits are sequential. In our design method, however, races and
hazards are absent.

The fault model we use is the stuck-at model, where each wire may be stuck
forever at a high (logic-i) or low (logic-0) voltage. We have proven that it is sufficient
to perform a single four-phase handshake on each channel to detect all detectable
stuck-at faults. Some faults are undetectable.

I For the automatic compilation, the main sequencing element is the so-called
D-element. For the D-element, there are twenty-two possible stuck-at faults, two
of which are undetectable. We have designed an alternate D-element that does not
have any undetectable stuck-at faults. Most other circuit constructs in this compiler
are completely testable.

I Although it is not yet certain whether all constructs can be made entirely
testable, our present estimate is that self-timed circuits designed according to our
method should be easier to test than traditional clocked circuits.

4.2 A Self-Timed 3x + 1 Engine

Tony Lee, Alain Martin

We have designed and fabricated a self-timed special-purpose processor for
implementing the 3x+ 1 algorithm. The processor consists of a state-machine and an
80-bit-wide datapath. It contains approximately 40,000 transistors and operates at
over 8 MIPS in 21im MOSIS SCMOS technology. As usual, the chip was functional
on first silicon.

4.3 Performance Analysis of Self-Timed Circuits

Steve Burns, Alain Martin

We have developed methods for determining the repetition time of a set of
communicating sequential processes described as handshaking expansions. This
performance measure is provided in the form of constraint equations involving
symbolic values of the communication and sequencing delays. The analysis is valid
regardless of the actual delay values, and thus provides a means of comparing designs
described at the handshaking expansion level without first generating detailed
circuit implementations. Circuits for handshaking expansions that result in slow
repetition times need never be designed.

I -10-

I

I

This method has proven particularly useful in the analysis of programs involving I
data. It has been used throughout the design of the self-timed microprocessor,
increasing the performance of programs involving data up to a factor of two.

4.4 The Design of a Self-Timed Microprocessor

Alain Martin, Steve Burns, Tony Lee, Drazen Borkovic, Pieter Hazewindus I
In order to refute the claims that our design method would be too slow and too
wasteful in area for anything but small circuits, we have embarked on the design of
complete general-purpose microprocessor. The instruction set is "classic": 16-bit
instructions with offset, load/store type of instructions, and separate memories
for instructions and data. The only restriction is the absence of an interrupt I
mechanism.

As expected, since the method is based on concurrent programming techniques,
the design is highly concurrent. The fetch, decode, and execute phases overlap, as
do the execution of ALU and memory instructions. The different processes share
16 general-purpose registers, and four buses are used to communicate with the I
registers, in addition to point-to-point channels.

We are now in the layout phase of the design. Preliminary estimates of the

performance are encouraging. In 2Atm SCMOS, we expect to reach 20MIPS.

4.5 Mosaic Elements

Chuck Seitz, Bill Athas, Charles Flaig, Glenn Lewis, Don Speck, Jakov Seizovic,
Wen-King Su

With the completion of the packet interface section and the near-completion of the
processor, and with the other sections having already been fabricated and tested,
the Mosaic C single-chip multicomputer node is rapidly approaching completion.
Assembly of the sections will start within the next month, and fabrication of
complete elements early in 1989.

The packet interface for the Mosaic chip has been layed out and verified with the

switch-level simulation. It is entirely synchronous, and was designed conservatively,
so no problems with it are anticipated.

The packet interface consists of two independent finite-state machines, one for
sending packets, and the other for receiving packets. Both machines act as simple
DMA channels, stealing unused memory cycles, and the packet interface is designed
to be able to sustain a throughput equal to the maximum possible message rate that
can be achieved by the message router.

The packet interface provides for a fairly complete testing of itself and the router,

initiated by a CPU request to send a message to itself. In this mode of operation, the
message will be taken from the memory, sent through all three router dimensions,
and received back into the memory.

-11-

I

4.6 Fast Self-Timed Mesh Routing Chips

Charles Flaig, Chuck Seitz

A new design of a mesh routing chip (MRC), the FMRC2.0 design, was sent to
fabrication in May 1988, together with a separate test chip containing only the
FIFO used in the FMRC2.0. These chips employ a circuit design style that is
potentially faster but less conservative than is usual for self-timed designs. The
chips returned from fabrication do indeed operate nearly three times faster than
previous designs. The FIFG test chip, fabricated in a 21im MOSIS SCMOS process
(this chip was also a test of the new 40-pin 2p•m pads and design frame that we
developed for MOSIS) operated correctly at 70 MBytes/s!

The critical path in a routing chip includes somewhat longer delay paths due
to the switching of the packets; hence, although the FMRC2.0 was fabricated in a
1.6tzm process, and its FIFOs might be expected to operate at around 85 MBytes/s,
it operates as anticipated at 70 MBytes/s. However, it routes packets incorrectly,
showing symptoms of directing packets according to the tail of the previous packet
rather than the head of the current packet. This fault was finally traced to a timing
error of approximately 0.7ns in the latching of a routing decision. The timing error
was fixed, and the timing margins in the entire chip were reexamined. A post facto
Spice simulation of what the analysis showed were the critical points in the old
and new designs verified that the original design had a timing error of 0.7ns, while
the revised design has a timing margin of about 1.0ns (about 50% of the difference
between two short delay paths; hence, not as close as it may sound).

If successful, we expect this new FMRC chip to replace the MRC currently
used in the Ametek Series 2010 multicomputer. With help from George Lewicki,
this design is also being transferred to an Intel fabrication process for possible use
in a future Intel multicomputer.

Tests of the self-timed FIFO in a 2Am MOSIS SCMOS technology will be of
interest to other chip designers in the DARPA VLSI community - particularly
those designing self-timed chips.

The 21im FIFO tests yielded a request --- acknowledge time of 6.5-7.Ons, and
a throughput of over 70 MBytes/s on these byte-wide channels. Lest someone
interpret this test result as implying that we are driving 70MHz signals through
these pads, please understand that in 2-cycle R/A signaling (cf, Mead & Conway,
figure 7.16), only one transition is required for each data transfer, so the maximum
fundamental frequency on any R/A or data pin is 35MHz to transfer data at a
70MHz rate.

The total fall-through time for all 101 FIFO stages was measured as 350ns,
or 3.5ns fallthrough per stage. The fallthrough time calculated by the T-model
is about 70r, so this is consistent with a value of r for the 2Am MOSIS SCMOS
n-well process of about 50ps (which is a bit smaller than expected). The internal

-12-

i

cycle time when the operation is not impeded by signals passing through pads and I
package pins is about 180r, or about 9ns, corresponding to an internal throughput
rate of 114MHz.

These speeds in the 21 MOSIS n-well SCMOS technology are, as expected,
about twice as fast as a nearly identical test device fabricated in a 3gm MOSIS
p-well SCMOS process. The fallthrough times are more difficult to measure in the I
1.61m FMRC2.0 chip, because of switching and address-decrementing logic in the
FIFO pipeline. We can infer than the FIFO fall-through times are about 2.8ns per
stage, corresponding to a r of 40ps, and an internal throughput rate of about 140
MHz.

It is quite evident from these tests that we are able to achieve much higher
internal speeds with self-timed and/or asynchronous designs than we know how to
achieve with clocked designs.

4.7 Adaptive Routing in Multicomputer Networks

John Y. Ngai, Chuck Seitz

Our studies of adaptive routing in multicomputer networks are approaching a
conclusion, and have been generally successful. We now believe that the Adaptive
Cut-Through (ACT) routing scheme is capable of outperforming the existing highly
evolved oblivious routing devices by a factor of about two in throughput, and have

numerous other advantages in hot-spot throughput and fault-tolerance. A summary m
of the results of our investigations is attached at the end of this report.

What remains to be done to realize the advantages of the ACT routing scheme
is to design a VLSI routing chip and/or a new routing section for the Mosaic C.

4.8 Pads and Pad Frame Generation

Charles Flaig, Chuck Seitz

Derived in large part from the pads and pad frames we have designed for mesh
routing chips (MRCs), a variety of new pad circuits have been designed for the

A = 0.61hm, 0.8gm, and 1.0gm MOSIS SCMOS processes. One of these design i
variations was used to produce a new 2gm 40-pin "tiny-chip" frame for MOSIS,
including input, Schmitt input, output, and tristate output pads. The unusual

features of these pad designs include the use of longitudinal (bipolar) clamp i
transistors for static and overvoltage protection, and a variety of pad pitches.

We can now report some test results for the 2gm pads. This 40-pin pad frame
was fabricated with a 101-stage self-timed FIFO from the FRMC2.0 design (see
section 4.6), together with some output pads being driven directly from input pads.

Overvoltage clamping on the inputs clamps to 6V at 200mA, and 7V at 800mA,

which is excellent. Undervoltage protection is about the same as above, BUT, at

-13- I

I

about -500mA the chip appears to suffer latchup (if power is supplied). This is not
a problem for normal static, where no Vdd is applied, but if an input does goes
more than about 1V negative while power is applied, latchup may be induced.

For the Schmitt input pad, trigger voltages are 0.8V and 3.9V, for a 2.9V
hysteresis. Inpad -+ Outpad delay is 1.5-2.Ons for no load, 2.0-2.5ns for a fanout
of 1, and 2.5-3.5ns for a fan-out of 2. Rise/fall time - 3.5ns for no load, 4.5ns for a
fanout of 1, and 6.5ns for a fan-out of 2. The output pads can sink about 30mA at
1.0V, or source about 30mA at 4.OV, under 5.OV operation. These characteristics
are more than adequate for student projects.

4.9 The Notorious CIF-flogger Program

Glenn Lewis, Chuck Seitz

The CIF-flogger is a multicomputer program for flattening CIF files, rasterizing the
geometry, and for performing parallel operations on the geometry in strips. It runs
under the CE/RK system, and hence, on most available multicomputers, including
the Ametek Series 2010.

The CIF-flogger currently supports simple bloat, shrink, and logical operations
on the flattened geometry, and hence can perform most geometrical design-rule
checks. It establishes connected component labeling and will eventually provide
complete design-rule checking, well checks, and circuit extraction. Based on timings
on the iPSC/1, CIF-flogger is expected to perform design rule checks for 10OK-
transistor chips in much less than ls per rule on second-generation multicomputers.

-14-

I

California Institute of Technology I
Computer Science Department, 256-80

Pasadena CA 91125

Technical Reports I
23 August 1988

Prices include postage and help to defray our printing and mailing costs.

Publication Order Form
der reports fill out the last page of this publication form. Prepayment is required for all materials. Purchase orders will not
cepted. All foreign orders must be paid by international money order or by check drawn on a U.S. bank in U.S. currency, m
)le to CALTECH.

S-TR-88-17 $3.00 Constrained Diffrential Optimization for Neural Networks,
Platt, John C and Alan H Barr I

?'S-TR-88-16 $3.00 Programming Parallel Computers,
Chandy, K. Mani

3S-TR-88-15 $13.00 Applications of Surface Networks to Sampling Problems in Computer Graphics, PhD Thesis
Von Herzen, Brian

'S-TR-88-14 $2.00 Syntax-directed Translation of Concurrent Programs into Self-timed Circuits
Burns, Steven M and Alain J Martin

aS-TR-88-13 $2.00 A Message-Passing Model for Highly Concurrent Computation, I
Martin, Alain J

3S-TR-88-12 $4.00 A Comparison of Strict and Non-strict Semantics for Lists, MS Thesis
Burch, Jerry R

JS-TR-88-07 $3.00 The Hexagonal Resistive Network and the Circular Approximation,
Feinstein, David I

"IS-TR-88-06 $3.00 Theorems on Computations of Distributed Systems,

Chandy, K Mani
"2S-TR-88-05 $3.00 Submicron Systems Architecture

ARPA Semiannual Technical Report
"ýS-TR-88-01 $3.00 C Programmer's Abbreviated Guide to Multicomputer Programming, I

Seitz, Charles, Jakov Seizovic and Wen-King Su
i258:TR:88 $3.00 Submicron Systems Architecture

ARPA Semiannual Technical Report
5256:TR:87 $2.00 Synthesis Method for Self-timed VLSI Circuits,

Martin, Alain
current supply only: see Proc. ICCD'87: 1987 IEEE Int'l. Conf. on Computer Design, 224-229, Oct'87 U

5253:TR:88 $2.00 Synthesis of Self-Timed Circuits by Program Transformation,
Burns, Steven M and Alain J Martin

5251:TR:87 $2.00 Conditional Knowledge as a Basis for Distributed Simulation,
Chandy, K. Mani and Jay Misra

5250:TR:87 $10.00 Images, Numerical Analysis of Sinjularities and Shock Filters, PhD Thesis
Rudin, Leonid Iakov

S249:TR:87 $6.00 Logic from Programming Language Semantics, PhD Thesis
Choo, Young-il I

5247:TR:87 $6.00 VLSI Concurrent Computation for Music Synthesis, PhD Thesis
Wawrzynek, John

5246:TR:87 $3.00 Framework for Adaptive Routing
Ngai, John Y and Charles L. Seitz

5244:TR:87 $3.00 Multicomputers
Athas, William C and Charles L Seitz

5243:TR:87 $5.00 Resource-Bounded Category and Measure in Exponential Complexity Classes, PhD Thesis
Lutz, Jack H

1I I

Caltech Computer Science Technical Reports

7R:87 $8.00 Fine Grain Concurrent Computations, PhD Thesis
Athas, William C.

MR:87 $3.00 VLSI Mesh Routing Systems, MS Thesis
Flaig, Charles M

[rR:87 $2.00 Submicron Systems Architecture
ARPA Semiannual Technical Report

[R:87 $3.00 Trace Theory and Systolic Computations
Rem, Martin

['R:87 $7.00 Incorporating Time in the New World of Computing System, MS Thesis
Poh, Hean Lee

['R:86 $4.00 Approach to Concurrent Semantics Using Complete Traces, MS Thesis
Van Horn, Kevin S.

PR:86 $4.00 Submicron Systems Architecture
ARPA Semiannual Technical Report

rR:86 $3.00 High Performance Implementation of Prolog
Newton, Michael 0

rR:86 $3.00 Some Results on Kolmogorov-Chaitin Complexity, MS Thesis
Schweizer, David Lawrence

rR:86 $4.00 Cantor User Report
Athas, W.C. and C. L. Seitz

rR:86 $24.00 Monte Carlo Methods for 2-D Compaction, PhD Thesis
Mosteller, R.C.

rR:86 $4.00 anaLOG - A Functional Simulator for VLSI Neural Systems, MS Thesis
Lazzaro, John

rR:86 $3.00 On Performance of k-ary n-cube Interconection Networks,
Dally, Wm. J

17R:86 $18.00 Parallel Execution Model for Logic Programming, PhD Thesis
Li, Pey-yun Peggy

TR:86 $15.00 Integrated Optical Motion Detection, PhD Thesis
Tanner, John E.

TR:86 $3.00 Sync Model: A Parallel Execution Method for Logic Programming
Li, Pey-yun Peggy and Alain J. Martin
current supply only: see Proc SLP'86 3rd IEEE Symp on Logic Programming Sept '86

TR:86 $4.00 Submicron Systems Architecture
ARPA Semiannual Technical Report

TR:86 $2.00 How to Get a Large Natural Language System into a Personal Computer,
Thompson, Bozena H. and Frederick B. Thompson

TR:86 $2.00 ASK is Transportable in Half a Dozen Ways,
Thompson, Bozena H. and Frederick B. Thompson

TR:86 $2.00 On Seitz' Arbiter,
Martin, Alain J

TR:86 $2.00 Compiling Communicating Processes into Delay-Insensitive VLSI Circuits,
Maratin, Alain
current supply only: see Distributed Computing v 1 no 4 (1986)

TR:86 $2.00 Complete and Infinite Traces: A Descriptive Model of Computing Agents,
van Horn, Kevin

TR:85 $2.00 Two Theorems on Time Bounded Kolmogrov-Chaitin Complexity,
Schweizer, David and Yaser Abu-Mostafa

TR:85 $3.00 An Inverse Limit Construction of a Domain of Infinite Lists,
Choo, Young-Il

TR:85 $15.00 Submicron Systems Architecture,
ARPA Semiannual Technical Report

2

I
Caltech Computer Science Technical Reports

52n0:TR:85 $18.00 ANIMAC: A Multiprocessor Architecture for Real-Time Computer Animation, PhD thesis I
Whelan, Dan

5198:TR:85 $8.00 Neural Networks, Pattern Recognition and Fingerprint Hallucination, PhD thesis
Mjolsness, Eric I

5197:TR:85 $7.00 Sequential Threshold Circuit. ,'S thesis
Platt, John

5195:TR:85 $3.00 New Generalization of i)ekker's Algorithm for Mutual Exclusion,
Martin, Alain J
current suppi- only: see Information Processing Letters, 23, 295-297 (1986)

5194:TR:85 $5.00 Sneptree - A Versatile Interconnection Network,
Li, P(, •,n, Peggy and Alain J Martin I

.5193:TR:85 $2.00 Delay-insensitive Fair Arbiter
Martin, Alain J
current supply only: see Distr Computing 1:226-234 (1986) I

.5190:TR:85 $3.00 Concurrency Algebra and Petri Nets,
Choo, Young-il

5189:TR:85 $10.00 Hierarchical Composition of VLSI Circuits, PhD Thesis
Whitney, Telle

.5185:TR:85 $11.00 Combining Computation with Geometry, PhD Thesis
Lien, Sheue-Ling

.5184:TR:85 $7.00 Placement of Communicating Processes on Multiprocessor Networks, MS Thesis
Steele, Craig

_5179:TR:85 $3.00 Sampling Deformed, Intersecting Surfaces with Quadtrees, MS Thesis,
Von Herzen, Brian P.

_5178:TR:85 $9.00 Submicron Systems Architecture,
ARPA Semiannual Technical Report

_5174:TR:85 $7.00 Balanced Cube: A Concurrent Data Structure,
Daily, William J and Charles L Seitz

_5172:TR:85 $6.00 Combined Logical and Functional Programming Language,

Newton, Michael
_5168:TR:84 $3.00 Object Oriented Architecture,

Dally, Bill and Jim Kajiya
_5165:TR:84 $4.00 Customizing One's Own Interface Using English as Primary Language,

Thompson, B H and Frederick B Thompson
_5164:TR:84 $13.00 ASK French - A French Natural Language Syntax, MS Thesis

Sanouillet, Remy

_5160:TR:84 $7.00 Submicron Systems Architecture,
ARPA Semiannual Technical Report I

_5158:TR:84 $6.00 VLSI Architecture for Sound Synthesis,
Wawrzynek, John and Carver Mead

_5157:TR:84 $15.00 Bit-Serial Reed-Solomon Decoders in VLSI, PhD Thesis
Whiting, Douglas

_5147:TR:84 $4.00 Networks of Machines for Distributed Recursive Computations,
Martin, Alain and Jan van de Snepscheut

_5143:TR:84 $5.00 General Interconnect Problem, MS Thesis I
Ngai, John

_5140:TR:84 $5.00 Hierarchy of Graph Isomorphism Testing, MS Thesis
Chen, Wen-Chi

_5139:TR:84 $4.00 HEX: A Hierarchical Circuit Extractor, MS Thesis
Oyang, Yen-Jen

_5137:TR:84 $7.00 Dialogue Designing Dialogue System, PhD Thesis
Ho, Tai-Ping U

3I

I

Caltech Computer Science Technical Reports

R:84 $5.00 Heterogeneous Data Base Access, PhD Thesis
Papachristidis, Alex

R:84 $7.00 Toward Concurrent Arithmetic, MS Thesis
Chiang, Chao-Lin

R:84 $2.00 Using Logic Programming for Compiling APL, MS Thesis
Derby, Howard

R:84 $13.00 Hierarchical Timing Simulation Model for Digital Integrated Circuits and Systems, PhD Thesis
Lin, Tzu-mu

R:84 $10.00 Switch Level Fault Simulation of MOS Digital Circuits, MS Thesis
Schuster, Mike

R:84 $5.00 Design of the MOSAIC Processor, MS Thesis
Lutz, Chris

M:84 $3.00 Linguistic Analysis of Natural Language Communication with Computers,
Thompson, Bozena H

R:84 $6.00 Supermesh, MS Thesis
Su, Wen-king

R:84 $14.00 Mossim Simulation Engine Architecture and Design,
Dally, Bill

R:84 $8.00 Submicron Systems Architlccture,
ARPA Semiannual Technical Report

M:84 $3.00 ASK As Window to the World,
Thompson, Bozena, and Fred Thompson

R:83 $22.00 Parallel Machines for Computer Graphics, PhD Thesis
Ulner, Michael

M:83 $1.00 Ray Tracing Parametric Patches,
Kajiya, James T

'R:83 $9.00 Graph Model and the Embedding of MOS Circuits, MS Thesis
Ng, Tak-Kwong

'R:83 $2.00 Stochastic Estimation of Channel Routing Track Demand,
Ngai, John

'M:83 $2.00 Residue Arithmetic and VLSI,
Chiang, Chao-Lin and Lennart Johnsson

'R:83 $2.00 Race Detection in MOS Cir-,,its by Ternary Simulation,
Bryant, Randal E

'R:83 $9.00 Space-Time Algorithms: Semantics and Methodology, PhD Thesis
Chen, Marina Chien-mei

'R:83 $10.00 Signal Delay in General RC Networks with Application to Timing Simulation of Digital
Integrated Circuits,
Lin, Tzu-Mu and Carver A Mead

'R:83 $4.00 VLSI Combinator Reduction Engine, MS Thesis
Athas, William C Jr

'R:83 $10.00 Hardware Support for Advanced Data Management Systems, PhD Thesis
Neches, Philip

'R:83 $4.00 RTsim - A Register Transfer Simulator, MS Thesis
Lam, Jimmy
current supply only: see Acta Informatica 20, 301-313, (1983)

'R:83 $10.00 Robust Sentence Analysis and Habitability,
Trawick, David

'R:83 $12.00 Automated Performance Optimization of Custom Integrated Circuits, PhD Thesis
Trimberger, Steve

'R:82 $3.00 Switch Level Model and Simulator for MOS Digital Systems,
Bryant, Randal E

4

I
Caltech Computer Science Technical Reports

. 5054:TM:82 $3.00 Introducing ASK, A Simple Knowledgeable System, Conf on App'l Natural Language Processing I
Thompson, Bozena H and Frederick B Thompson

-5051:TM:82 $2.00 Knowledgeable Contexts for User Interaction, Proc Nat'l Computer Conference

Thompson, Bozena, Frederick B Thompson, and Tai-Ping Ho I
-5035:TR:82 $9.00 Type Inference in a Declarationless, Object-Oriented Language, MS Thesis

Holstege, Eric
-5034:TR:82 $12.00 Hybrid Processing, PhD Thesis

Carroll, Chris
_5033:TR:82 $4.00 MOSSIM II: A Switch-Level Simulator for MOS LSI User's Manual,

Schuster, Mike, Randal Bryant and Doug Whiting

__5029:TM:82 $4.00 POOH User's Manual,
Whitney, Telle

-5018:TM:82 $2.00 Filtering High Quality Text for Display on Raster Scan Devices,
Kajiya, Jim and Mike Ullner I

-5017:TM:82 $2.00 Ray Tracing Parametric Patches,
Kajiya, Jim

_5015:TR:82 $15.00 VLSI Computational Structures Applied to Fingerprint Image Analysis,
Megdal, Barry

-5014:TR:82 $15.00 Extension of Object-Oriented Languages to a Homogeneous, Concurrent Architecture, PhD Thesis
Lang, Charles R Jr

_5012:TM:82 $2.00 Switch-Level Modeling of MOS Digital Circuits, l
Bryant, Randal

-5000:TR:82 $6.00 Self-Timed Chip Set for Multiprocessor Communication, MS Thesis
Whiting, Douglas

_4684:TR:82 $3.00 Characterization of Deadlock Free I source Contentions,
Chen, Marina, Martin Rem, and Ronald Graham

-4655:TR:81 $20.00 Proc Second Caltech Conf on VLSI,
Seitz, Charles, ed. i

-3760:TR:80 $10.00 Tree Machine: A Highly Concurrent Computing Environment, PhD Thesis
Browning, Sally

_3759:TR:80 $10.00 Homogeneous Machine, PhD Thesis
Locanthi, Bart

_3710:TR:80 $10.00 Understanding Hierarchical Design, PhD Thesis
Rowson, James

_3340:TR:79 $26.00 Proc. Caltech Conference on VLSI (1979),
Seitz, Charles, ed

__2276:TM:78 $12.00 Language Processor and a Sample Language,
Ayres, Ron i

I
I
i
I

5 I
I

Caltech Computer Science Technical Reports

Please PRINT your name, addres- and amount enclosed below:

name

Address

I City State Zip Country

Amount enclosed $

__Please check here if you wish to be included on our mailing list

Please check here for any change of address

I Please check here if you would prefer to have future publications lists sent to your e-mail address.

SE-mail address

Return this form to: Computer Science Library, 256-80, Caltech, Pasadena CA 91125

I88-17 5238 5197 5135 5054

88-16 5236 5195 5134 5051

88-15 5235 5194 5133 5035

88-14 5234 5193 5132 5034

88-13 5233 5190 5129 5033

88-12 5232 5189 5128 5029

88-07 5231 5185 5125 5018

88-06 5230 5184 5123 5017

88-05 5229 5179 5122 5015

88-01 5228 5178 5114 5014

5258 5227 5174 5112 5012

I 5256 5223 5172 5106 5000

5253 5221 5168 5104 4684

5251 5220 5165 5094 4655

5250 5215 5164 5092 3760

5249 5214 5160 5091 3759

5247 5212 5158 5090 3710

5246 5210 5157 5089 3340

5244 5207 5147 5086 2276

5243 5205 5143 5082

5242 5204 5140 5081

5241 5202 5139 5074

5240 5200 5137 5073

5239 5198 5136 5065I

I

Variants of the Chandy-Misra-Bryant Distributed
Discrete-event Simulation Algorithm 3

Wen-King Su and Charles L. Seitz
Department of Computer Science
California Institute of Technology

I
1. Introduction

We have been using variants of the Chandy-Misra-Bryant (CMB) distributed
discrete-event simulation algorithm [1,2,31 since 1986 for a variety of simulation
tasks [4]. The simulation programs run on multicomputers [5] (message-passing I
concurrent computers), such as the Cosmic Cube, Intel iPSC, and Ametek Series
2010. The excellent performance of these simulators led us to investigate a family
of variants of the basic CMB algorithm, including lazy message-sending, demand-
driven operation with backward demand messages, and adaptive adjustment of the
parameters that control the laziness.

These studies were also motivated by our interest in scheduling strategies for
reactive (message-driven) multiprocess programs [5,6,7], which are semantically
similar to discrete-event (event-driven) simulators. The simulator itself is i
implemented in the reactive programming environment that we have developed
for multicomputers, the Cosmic Environment, and the Reactive Kernel [8].

This paper is a brief and preliminary report of the simulation algorithms and
performance results. A more definitive report will be found in the first author's
forthcoming PhD thesis.

2. The CMB Simulation Framework

As usual, the system to be simulated is modeled as a set of communicating elements.
A CMB simulator can be implemented by coding the behavior of elements in
processes that communicate by messages. A message conveys both a time interval
and any events within this interval. A process reacts to the receipt of an input
message by updating its internal state; and, if outputs can be 'advanced in time,

The research described in this paper was sponsored in part by the Defense
Advanced Research Projects Agency, DARPA Order number 6202, and monitored
by the Office of Naval Research under contract number N00014-87-K-0745; and in
part by grants from Intel Scientific Computers and Ametek Computer Research
Division. 3

1!

by sending messages to connected processes. These messages may include null
messages that convey no events (changes in the state information), but serve only
to advance the simulation time.

It is easy to show that such a simulator is correct [3], in the sense that it computes
a possible behavior of the system being simulated. A sufficient condition for freedom
from deadlock in this eager message-sending mode is that there is a positive delay in
every circuit in the graph of element vertices and communication arcs. Intuitively,
it is the delay of the elements being simulated that permits the element simulators
to compute the outputs over an interval that is later than the time of the inputs,
so that time advances. Simulation time is determined locally, and may get as far
out of step at different elements as their causal relationships permit.

This conservative (also known as pessimistic) type of simulator exploits precisely
the concurrency inherent in the system being simulated. In practice, just as
with other concurrent programs, if the number of concurrently runnable processes
substantially exceeds the number of processors, the utilization of concurrent
resources is high. The speculative (also known as optimistic) type of simulator
attempts to exploit additional concurrency by computing beyond the interval during
which inputs are defined, at the risk of having to roll back if the speculations
prove incorrect. Such approaches are attractive for simulating systems whose
inherent concurrency is insufficient to keep concurrent resources busy, and in which
speculations can be made with high confidence. Our studies have concentrated on
conservative variants of the CMB algorithm.

The principal trouble with naive implementations of conservative CMB dis-
tributed simulation programs is a volume of null messages that may greatly exceed
the number of event-containing messages. This difficultly is most evident when
simulating systems with many short-delay circuits having relatively low levels of
activity.

In practice, an element simulator may take as long to process a null message
as an event-containing message, particularly with simple elements such as logic
gates. In distributing the simulation, we seek to reduce the time required
to complete the computation; however, we have an immediate problem if the
element simulators must perform many more message-processing operations in the
distributed simulation than they would perform event-processing operations in a
sequential simulation. The centralized regulation of the advance of time achieved
through the ordered event list maintained by sequential simulation programs allows
these simulators to invoke element routines only once for each input event. The null
messages inflate not only the volume of messages the system must handle, but also
the computational load. Thus, if we are going to compete with the best sequential
simulators, we must redure the volume of null messages.

3. Indefinite Lazy Message Sending

To reduce the volume of messages, we use various strategies to defer sending outputs
in the hope that the information can be packed into fewer messages. For example,

2

II

I

one of the most obvious schemes is to defer sending null messages, so that a series I
of null messages and an event-containing message can be combined to form a single
message that spans a longer interval. Since output events are often triggered only
by input events, deferring the delivery of preceeding null messages is less likely
to hamper the progress of the destination element than deferring the delivery of
event-containing messages. I

The first problem that must be addressed in employing such strategies is
deadlock. When element simulators defer sending output messages, they may
cyclically deny themselves input messages, leading to deadlock. All of our simulators
have employed a technique of indefinite lazy message sending to permit arbitrary
strategies for deferring message sending, while still avoiding deadlock. The following
is the inner loop of the simulator, shown in the C programming language:

while(1)
if (p = xrecvO)I

simulate.and.optionally.send-messages (p);else
take-other-actiono;

The function xrecv returns a pointer, p, that points to a message for the simulation
process if a message has been received. The simulator then dispatches to the
appropriate element simulator, and may either send or queue the outputs that
the element simulator produces. If there is no message in the node's receive queue,
the pointer returned is a NULL (0) pointer. In this case, the simulator takes other
action to break any possible deadlock. For a source-driven simulator, it selects a
queued output to send as a message. For a demand-driven simulator, it selects a I
blocked elemen and sends a demand message to its predecessor to request that
queed outputs be sent. A deadlock in deferring messages cannot occur without
"starving" a node of messages. When this situation is detected by xrecv returning
a NULL pointer, the resulting action breaks the potential deadlock.

Within this indefinite lazy message-sending framework, we can experiment with
any scheme for deferring and combining messages without concern for deadlock.
A message is free to carry any number of events, and an element is free to defer
message sending on any basis.

4. Variant Algorithms

We have experimented with many CMB variants; in the interests of comprehension,
we will outline the operation and report the performance of six variants that are
representative of the range of possibilities that we h•.re studied:

A Eager message sending: This basic form of CMB serves as a baseline for
comparison against the variants. 3

B Eager events, lazy null messages: Null outputs are queued. F-rnt outputs are
sent immediately combined with any queued null outputs. When xrecv returns

3

a NULL pointer, the null output that extends to the earliest time is sent as a
null message.

C Indefinite lazy, single event: All output from element simulators is queued.
Messages are sent only when xrecv returns a NULL pointer. The output queue
that extends to the earliest time is selected to generate a message up to the first
event, if any, or a null message to the end of the interval.

D Indefinite lazy, multiple event: This scheme is a slight variation on C, motivated
by characteristics of multicomputer message systems that make it economical to
pack multiple events into fewer messages. All output from element simulators is
queued. The output queues may contain multiple events. When xrecv returns
a NULL pointer, the output queue that extends to the earliest time is selected
to generate a message up to the last queued event, if any, or a null message to
the end of the interval. However, to allow a direct comparison with sequential
simulators, events are processed singly.

E Demand driven: Although we usually think of simulation as source driven from
inputs, one can equally well organize the simulation as demand driven from
outputs. In the pure demand-driven form, all output from element simulators
is queued. When xsend returns a NULL pointer, the input that lags furthest
behind selects the destination for a demand message. Upon receipt of a demand
message, if the output queue is not empty, the simulator sends all the information1 in the output queue; if the output queue is empty, the simulator generates another
demand message to the source of lagging input to this element.

F Demand driven adaptive: Demand messages single out critical paths in a
simulation. In an adaptive form of demand-driven simulation, a threshold is
associated with each communication path. Outputs of element simulators are
queued only up to the threshold; whe- the threshold is exceeded, the contents
of the queue are sent as a message. Demand messages operate as in E, but also
cause the threshold to be decreased (in the cases shown below, the threshold is

I halved). The simulator is accordingly able to adapt itself to the characteristics
of the system being simulated.

Although these variants are described here in terms of message passing, the
same variants also appear as different scheduling strategies in shared-memory
implementations.

5. Experimental Method

In common with other highly evolved message-passing p'ograms, the simulator is
implemented with one simulation process per multicomputer node (or, in the Cosmic
Environment, with one simulation process per host computer or per processor in
a multiprocessor). The instrumented simulator is actually a simulator within a
simulator.

Basis of comparison: Although real-time execution speed is one of the most
I natural bases of comparison between any two programs that perform the same

4I

i

function, real-time speed and speedup curves are not themselves particularly i
revealing when there are so many parameters involved.

In order to unmask the behavioral differences of the simulators, we normalize the
measured execution speeds to a common unit, called a sweep 15, 6]. Here we will
let a sweep be a fixed time required to process one message, whether a single event,
null message, or demand message. The number of sweeps required for a sequential I
simulator to complete a simulation is simply the number of events generated during
the simulation.

Instrumentation: The simulator is a reactive program written in C, and is
instrumented to function in two operational modes. In the emulation mode, a
multicomputer emulation program runs a simulation of a multicomputer; this in
turn runs the reactive simulators. Speed is measured in sweep units. On each
sweep, each node is allowed to get one message from its receive queue (if not empty)
and process it. In the real mode, the simulator runs directly on the multicomputer.
There is one copy of the simulator process in each node, and each simulator process
runs a subset of the elements as embedded reactive processes. Each node runs at
its own pace, and speed is measured with UNIX's real-time clock.

6. Experimental Results

We have performed these studies using logic circuits, because it is easy to construct
examples with a diversity of behaviors, and because logic simulation is itself of
practical interest. Performance measurements have been made on a variety of logic I
circuits, including those that axe representative of circuits found in computers and
VLSI chips, and those that are designed specifically to test or to stress the simulator.
Six different network types, each in several sizes up to 4000 logic gates, have been the
principal vehicles for these experiments. A larger range in performance is observed
among circuits with different characteristics than between algorithm variants.

Multiplier example: The parallel multiplier is a good example of an ordinary logic
circuit. It contains only limited concurrency: An n-bit multiplier has an average
concurrency of 2n due to the sequential dependency in the paths for carry and sum.
It does not contain tight loops that give the simulator artificial boosts or troubles,
depending on element distribution and loop stability. It also contains moderately
high fanout in the multiplier and multiplicand lines, which puts pressure on the i
message system. In all fairness, the distributed simulation of this multiplier circuit
is not expected to do too badly or too well on a multicomputer.

For the simulation, the most-significant bit of the product is connected back to
the multiplier input via an inverting delay. The delay is such that the multiplier
reaches a stable state before the multiplier input changes. The multiplicand input
is set to a value that causes the circuit to oscillate. A trace of the product outputs
shows that the simulator and the circuit are running correctly.

Measurements in the emulation mode: In the emulation mode, a 14-bit multiplier I
is used. Each full adder is composed of seven logic gates, and the 14x 14 structure
contains a total of 1376 logic gates. The average number of concurrent events

5 I

is about 28. The plot in Figure 1 portrays in a log-log format the sweep count
versus the number of nodes, N. The heavy horizontal line represents the number
of sweeps a sequential 'simulator requires. The first remarkable characteristic of
these performance measures is that they are so similar across this class of variant
algorithms.

log2(sweeps)
20
1 9 ,' .-- - -....

18 .. Eager message sending
17 Eager events, lazy null messages
16 -...-...... n l..y s.g le.14 .- "Indefinite lazy, single event

1 i......I.............. ,.....,, . ,...-.--... -.......-. --- ----------- I d fnt.a ym li l v n

13 --------------- Demand driven
12 Demand driven, adaptive

10 - -"""9-- og (nodes)
01 2 34 56 78 91011

Fig 1: A 1376-gate multiplier, emulation mode

At N=20 =1 node, we can compare the CMB variants with the sequential event-
driven simulator. The concurrent simulators produce 4-10 times as many null or

demand messages as event-containing messages, which is consistent with the 2-3
octave increase in sweep count over that of the sequential simulator. The speedup
is close to linear in N for 5-8 octaves. The concurrent simulators do not become
competitive with the sequential simulator until about N=8, but continue to nearly
halve the sweep count with each doubling of resources until limiting effects are

j reached.
The demand-driven simulation modes E-F begin to perform poorly due to an

increase in the volume of demand messages when the available concurrency of 28
(,-2') in the system being simulated is exhausted. In the adaptive form, demand
messages are meant to make small-delay circuits more eager by reducing their
queueing threshold. However, because the multiplier does not contain any small-

delay circuits, demand messages drive the queueing threshold too low, and cause
an excessive volume of null messages.

The source-driven variants extend the linear speedup for about 3 nmore octaves

until the extra concurrency introduced by the null messages is also exhausted. These
simulators reach asymptotic minimal time at 5 octaves below that of the sequential

I simulator, with only 3-6 elements per node. At this point the available concurrency
is exhausted, and the number of elements per node is too small for the weak law of
large numbers to assure load balance. The placement of elements in nodes for these

trials is balanced but random.
Additional statistics have been collected to measure other effects. For example,I when there are many circuit elements per node, the simulators are quite insensitive

6I

m

to latency. When there are few elements per node, the performance begins to I
deterioriate as message latency is increased, particularly for the variants that
perform well.

A second example for comparison: Figure 2 shows the sweep count versus N for
a 3400-gate clock network. This asynchronous sequential circuit has many small-
delay closed signal paths and a high activity level, resulting in an average event
concurrency of 256. I

log2(Sweeps) m
212 0 •.... r

20 ____a_ Eager message sending18 i-"-''"----i""i-'''"---'--"---'i.........

17 --- *.:-..... Eager events, lazy null m ssages
15N16 • E g r e e t , l z n u l m s a s

14 ~Indefinite lazy, muipgle event

12-104 - •...... In ei te l z , m t p e ev t•

01 -ii~i~ii:iii)iiiiii:i~:iiiiii:i::i•Demand driven, adaptivem

9......... ...
0 1 2 3 4 5 6 7 8 9 11112 o 2 nds

Fig 2: A 3400-gate clock network, emulation mode

Measurements on a real multicomputer: The results of simulating a scaled-down,
4-bit multiplier with 116 logic gates on an Intel iPSC/1 is shown in Figure 3.
Simulation of larger circuits gives excellent but uninteresting results, with linear
speedup over the entire range of 1 < N < 64. (Due to limitations of the iPSC/1
message system, neither of the demand-driven simulation modes will run.) The I
timing results show that the reactive simulators require about twice as many calls
to element simulators than a sequential simulator. The one-octave overhead is less
than that of the 14-bit multiplier because a larger fraction of the elements are active.
Since the average concurrency of the circuit is around eight, concurrency introduced
by the circuit and by the null messages is expected to be exhausted when N > 16
nodes. Although the elapsed time plot shows that the time starts to level off when
there are more than 16 nodes, it is somewhat less than linear in the range from
1-16 nodes, and is still decreasing slowly out to 64 nodes. The sublinear speedup
is due to message latency in inter-node communications, increased null messages as
the simulation is increasingly distributed, and load imbalance. m

7

Log 2(second.)

10 E ager m essage sen din g

----- ------------ Indefinite lazy, multiple event
8- i............

7- Eager events, lazy null messages

6 . log2 (nodes)0 1 2 3 4 5 6

Fig 3: A 116-gate multiplier on an iPSC/1 for a 100/s period

7. Conclusions
Logic simulation, which involves simulating the behavior of relatively simple
elements that have a high degree of connectivity, would be expected to be a difficult
case for distributed simulation. Indeed, the simulations presented here have been
much more revealing of the limitations of multicomputers and of the distributed
discrete-event simulation algorithms than earlier simulations that we performed of
systems such as multicomputer message networks.

For small N, neither the basic CMB algorithm nor the variants that we have tried
are nearly as efficient for logic simulation as the sequential event-driven simulator.
The null message is simply not as powerful a synchronization mechanism as the
global ordered event list. However, for large logic circuits, these conservative
variants on CMB produce excellent performance on multicomputers with large N
and small message latency.

Our current efforts are to implement what we believe will be an entirely practical
logic simulator for multicomputers and multiprocessors. It will employ a sequential
event-driven simulator with an ordered event list in each node, and these simulators
will be tied together using variants B, C, or D. Instead of random element
placement, we will compute a placement that localizes small-delay circuits.

8. Acknowledgment
We very much appreciate the constructive suggestions, ideas, and encouragement
that we have received from K. Mani Chandy.

9. References

[11 K. Mani Chandy and Jayadev Misra, "Asynchronous Distributed Simulation Via
a Sequence of Parallel Computations," CACM 24(4), pp 198-205, April 1981.

[2] Randal E. Bryant, "Simulation of Packet Communication Architecture Com-
puter Systems," MIT-LCS-TR-188, Massachusetts Institute of Technology, 1977.

[3] Jayadev Misra, "Distributed Discrete-Event Simulation," Computing Surveys
18(1), pp 39-65, March 1986.

8

I

14] "Submicron Systems Architecture," Semiannual reports to DARPA, Caltech I
Computer Science Technical Reports [5220:TR:861 and [5235:TR:86], 1986.

[5] William C. Athas and Charles L. Seitz, "Multicomputers: Message-Passing
Concurrent Computers," IEEE Computer 21(8), pp 9-24, August 1988.

[6] William C. Athas, "Fine Grain Concurrent Computation," Caltech Computer
Science Technical Report (PhD thesis) [5242:TR:87], May 1987.

[7] William J. Dally, A VLSI Architecture for Concurrent Data Structures, Kluwer
Academic Publishers, 1987.

[8] Charles L. Seitz, Jakov Seizovic, and Wen-King Su, "The C Programmer's
Abbreviated Guide to Multicomputer Programming," Caltech-CS-TR-88-1,
January 1988.

I
I
I
I
I

I
I
I
I

I
I
I

Adaptive Routing in Multicomputer Networks

John Y. Ngai
Charles L. Seitz

California Institute of Technology'

Multicomputer Networks. Message-passing Adaptive Cut-through Routing. In any adap-
concurrent computers, more commonly known as tive routing scheme which allows arbitrary multi-
multicomputers, such as the Caltech Cosmic Cube path routing, it is necessary to assure communica-
[1J and its commercial descendents, consist of many tion deadlock freedom. A very simple technique
computing nodes that interact with each other by that is independent of network size and topology,
sending and receiving messages over communication is through voluntary misrouting as suggested in 14]
channels between the nodes [2]. The existing corn- for networks that employ data exchange operations,
munication networks of the second-generation ma- and more generally in store-and-forward networks.
chines such as the Ametek 2010 employ an oblivious It was clear from the beginning that in order for the
wormhole routing technique [6,71 which guarantees adaptive multi-path scheme to compete favorably
deadlock freedom. The message latency of these with the existing oblivious wormhole technique, it
highly evolved oblivious technique have reached a must employ a switching technique akin to virtual
limit of being as fast as physically possible while ca- cut-through [5]. In cut-through switching, and its
pable of delivering, under random traffic, a stable blocking variant used in oblivious wormhole rout-
maximum substained throughput of s 45 to 50% of ing, a packet is forwarded immediately upon re-
the limit set by the network bisection bandwidth. ceiving enough header information to make a rout-
Any further improvements on these networks will ing decision. The result is a dramatic reduction in
require an adaptive utilization of available network the network latency over the conventional store-and-
bandwidth to diffuse local congestions. forward switching technique under light to moder-

ate traffic. Voluntary misrouting can be applied to
Inuan adaptive multi-path routing scheme, message assure deadlock freedom in rut-through switching
routes are no longer deterministic, but are con- networks, provided the input and output data rates
tinuously perturbed by local message loading. It across the channels at each node are tightly matched.
is expected that such an adaptive control can in- A simple way is to have all bidirectional channels of
crease the throughput capability towards the bisec- the same node operate coherently. Observe that in
tion bandwidth limit, while maintaining a reason- the extreme, packets coming in can always be either
able network latency. While the potential gain in forwarded or misrouted, even if the router has no in-
throughput is at most only a factor of 2 under ran- ternal buffer storage. In practice, buffers are needed
dom traffic, the adaptive approach offers additional to allow packets to be injected into the network, and
advantages such as the ability to diffuse local conges- to increase the performance of the adaptive control.
tions in unbalanced traffic, and the potential to ex-
ploit inherent path redundancy in these richly con- Network Progress Assurance. The adoption of
nected networks to perform fault-tolerant routing. voluntary misrouting renders communication dead-
The rest of this paper consists of a brief outline of lock a non-issue. However, misrouting also creates
the various issues and results concerning the adap- the burden to demonstrate progress in the form of
tive approach studied by the authors. A much more message delivery assurance. An effective scheme
detailed exposition can be found in [3]. that is independent of any particular network topol-

ogy is to resolve channel access conflicts according

"*The research described in this report was sponsored in to a priority assignment. A particularly simple pri-
part by the Defense Advanced Research Projects Agency, ority scheme assigns higher priorities to packets that
ARPA Order number 3771, and monitored by the Office of are closer to their destinations. Provided that each
Naval Research under contract number N00014-9-C-0597, node has enough buffer storage, this priority assign-
and in part by grants from Intel Scientific Computers and ment is sufficient to assure progress, ie., delivery
Ametek Computer Research Division.

I
16 X 16 2D Mesh 16 X 16 2D Mesh

L.0 400.

0.6 ~~~Adaptive 30-Aatv

0.6 Oblivious

0.4 - Oblivious

0.2 -100

0.0 0 ,
0.0 0.2 0.4 0.6 0.8 1.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Applied Load Throughput u
Figure 1: Throughput versus Applied Load. Figure 2: Message Latency versus Throughput.

of packets in the network. A more complex prior- work througkput and message latency. Figure 1 plots
ity scheme that assures delivery of every packet can the substained normalized network throughput ver-
be obtained by augmenting the above simple scheme sus the normalized applied load of the oblivious and
with age information, with higher priorities assigned adaptive schemes for a 16 x 16 2D mesh network,
to older packets. Empirical simulation results indi- under random traffic. The normalization is per- I
cate that the simple distance assignment scheme is formed with respect to the network bisection band-
sufficient for almost all situations, except under ex- width limit. Starting at very low applied load, the
tremely heavy applied load. throughput curves of both schemes rise along a unit

slope line. The oblivious wormhole curve levels off at
ofairness in Network Access. A different kind s 45 to 50% of normalized throughput but remains

of progress assurance that requires demonstration stable even under increasingly heavy applied load.
under our adaptive formulation is the ability of a In contrast, the adaptive cut-through curve keeps I
node to inject packets eventually. Because of the rising along the unit slope line until it is out of the

requirement to maintain strict balance of input and range of collected data. It should be pointed out,
output data rates, a node located in the center of however, that the increase in throughput obtained

heavy traffic might be denied access to network in- is also partly due to the extra silicon area invesLed
definitely. One possible way to assure network ac- in buffer storage, which makes available adaptive
cess is to have each router set aside a fraction of choices. Figure 2 plots the message latency versus

its internal buffer storage exclusively for injection. normalized throughput for the same 2D mesh net-
Receivers of packets are then required to return the work for a typical message length of 32 flits. The
packets back to the senders, which in turn reclaim curves shown are typical of latency curves obtained
the private buffers enabling further injections. I n i virtual cut-through switching. Both curves start I
essence, the private buffers act as permits to inject, with latency values close to the ideal at very low
which unfortunately have to be returned back to throughput, and remain relatively fiat until they
the original senders, thereby wasting network band- hit their respective transition points, after which
width. A different scheme that does not incur this both rise rapidly. The transition points are r 40%hI

overhead is to have the nodes maintain a bounded and 70%, respectively for the oblivious and adap-

synchrony with neighbors on the total number of tive schemes. In essence, the adaptive routing con-

injections. Nodes that fall behind will, in effect, trol increases the quantity of routing service, oe., the I
prohibit others from injecting until they catch up. network throughput, without sacrificing the quality
With idle nodes handled appropriately, the imposed of the provided service, ie., the message latency, at
synchrony assures eventual network access at each the expense of requiring more silicon area. I
node having packets queued for injection.

Fault-tolerant Routing. Another area where
Performance Comparisons. An extensive set adaptive multi-path routing holds promise is in

of simulations were conducted to obtain informa- fault-tolerant routing. The opportunity here stems I
tion concerning the potential gain in performance from the fact that, as we continue to build larger
by switching from the oblivious wormhole to the machines, we expect faults to be increasingly prob-
adaptive cut-through technique. Among the various able. However, for performance reasons, the net-
statistics collected, the two most important perfor- works popular in multicomputers are already very
mance metrics in communication networks are net- rich in connectivity. It is conceivable that a multi-

2 I

1024 Nodes 1024 Nodes

1.00 1.0

0.06 0.8 Octagonal Mesh

0.90 octagonal Mesh

0.95
0.6

0.80 Binary-1I-Cub Binary-1O-Cube

0.78 0.4

0.70

0.65 1 0.2 .
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12

Percentage of Faults Percentage of Faults

Figure 3: Reclamation Ratio for Node Faults Figure 4: Reclamation Ratio for Edge Faults

path control can perform fault-tolerant routing sim- destinations in the faulty network.
ply by exploiting the inherent path redundancy in
these networks. Fault-tolerant routing has been Regularization Procedures. An immediate re-

intensively studied in the network research corn- sult of having only local information to guide rout-

munity. However, multicomputer networks impose ing is that, pairs of survived nodes may not be able

stringent restrictions, not present in traditional net- to communicate with each other even if they remain

works, that require a new approach. In particular, connected. In order to communicate, each pair must

observe that the popular connection topologies of have at least one unbroken route joining them, which

multicomputer networks such as k-ary n-cubes or belongs to the set of original routes generated algo-

meshs are highly regular, which allow for simple al- rithmically in the non-faulty network. Because of

gorithmic routing procedures based entirely on local its resemblance to the notion of convexity, we re-

information. Such capability is particularly impor- fer to them as convex networks. Starting with an

tant in fine-grain multicomputers where resources at irregular survived network, one way to restore reg-

each node are scarce. Equally important, the sim- ularity is to selectively discard a subset of the sur-

ple algorithmic routing procedures in these regular vived nodes, so that the remaining subset becomes

topologies allow direct hardware realization of the convex, and hence can still communicate with each

routing functions, which is absolutely essential in other according to the original algorithmic proce-

high performance systems. dure. In essence, nodes which become difficult to
reach without global information are abandoned as

As nodes and channels fail, the regularity of these a result of our insistence on using only local routing
networks is destroyed and the algorithmic routing information. Another technique that can be em-
procedures are no longer applicable. Routing in ployed to restore regularity is to selectively restrain
irregular networks can be achieved by storing and a subset of the survived nodes to operate purely as
consulting routing tables at each node of the net- routing switches, ie., they are not allowed to source
work. However, such a scheme demands excessive or consume messages. The rationale is thal some
resources at each node and becomes unacceptable survived nodes which are difficult to reach from ev-
as the networks grow in size. A different and more erywhere, and hence should be discarded, may be in
satisfactory approach exploits the regularity of the positions which enable other pairs to communicate,
original non-faulty network. An interesting example and hence should be retained.
of such an approach can be found in [8]. In this pa-
per, we suggest an alternate approach based on our Some Reclamation Results. It is clear that the
adaptive routing formulation. Instead of devising effectiveness of this regularization approach will ul-

ways to route messages in these semi-irregular net- timately depend on the connection topology and the

works, we seek ways to restore the original regularity routing relations defined by the algorithmic routing

of the survival networks. This approach allows us to procedure. High-dimensional networks such as the

continue to use the original algorithmic routing pro- binary n-cube are expccted to deliver good results,
cedure. One immediate advantage is that the faulty whereas low-dimensional ones such as the 2D meshes

network can continue to use the original hardware generally do not. One possible way to improve the

router with very little change. Another advantage of reclamation yield of these low-dimensional networks

this approach is that we can obtain a priori bounds is to augment them with extra channels, eg., adding

on the length of routes joining pairs of sources and diagonal connected channels to a 2D mesh results in

3

I
an octagonal mesh. The additional connectivity in
the octagonal mesh generates a much richer set of
paths, and hence delivers much better reclamation
yield. Figures 3 and 4 plot the reclamation ratio for
the 32 x 32 octagonal mesh and Binary-10-cube ver-
sus the fraction of node faults, and channel faults re-
spectively. The faults were generated independently
and uniformly over the specific networks.

Future Challenge. Many aspects and problems
have been addressed in the course of this research,
and a number of solutions have been found. Clearly,
more work remains to be done. Perhaps the most
challenging of all is to realize on silicon, the set of
ideas outlined in this study. I
References.

[1] Charles L. Seits, "The Cosmic Cube", CACM, 3
28(1), January 1985, pp. 22-33.

[2] William C. Athas, Charles L. Seitz., "Multi-
computers: Message-Passing Concurrent Com-
puters", IEEE Computer, August 1988, pp. 9-
24.

[3] John Y. Ngai, Adaptive Routing in Multicom-
puter Networks. Ph.D. Thesis, Computer Sci-
ence Department, Caltech. To be published.

[4] Borodin, A. and Hopcroft, J., "Routing, Merg-
ing, and Sorting on Parallel Models of Compu-
tation", Journal of Computer and System Sci-
ences, 30, pp. 130-145 (1985).

[51 P. Kermani and L. Kleinrock, "Virtual Cut-
Through : A New Computer Communica- I
tion Switching Technique", Computer Net-
works 3(4) pp. 267-286, Sept. 1979.

[6] William J. Dally and Charles L. Seitz, "The
torus routing chip", Distributed Computing,
1986(1), pp. 187-196.

17] Charles M. Flaig, VLSI Mesh Routing Systems. I
Caltech Computer Science Department Techni-
cal Report, 5241:TR:87.

[8] J. Hastad, T. Leighton, M. Newman, "Recon-
figuring a Hypercube in the Presense of Faults."
Proceedings of the 19th Annual ACM Sympo-.
sium on Theory of Computing. May, 1987.

4I
4 I

I

I iUBMICRON SYSTEMS ARCHITECTURE PROJECT

n Department of Computer Science

California Institute of Technology

Pasadena, CA 91125

I
I

n Semiannual Technical Report

I

Caltech Computer Science Technical Report

Caltech-CS-TR-88-5

i 7 April 1988

The research described in this report was sponsored by the Defense Advanced Research

Projects Agency, DARPA Order number 6202, and monitored by the Office of Naval
Research under contract number N00014-87-K-0745.

I

I
I

I SUBMICRON SYSTEMS ARCHITECTURE

Semiannual Technical Report

Department of Computer Science

California Institute of Technology

Caltech-CS-TR-88-5

7 April 1988

I
I

I Reporting Period: 1 November 1987 - 31 March 1988

Principal Investigator: Charles L. Seitz

Faculty Investigators: William C. Athas

K. Mani Chandy

Alain J. Martin

Martin Rem

Charles L. SeitzI
I

N Sponsored by the
Defense Advanced Research Projects Agency

DARPA Order Number 6202

Monitored by the
Office of Naval Research

Contract Number N00014-87-K-0745I
I

SUBMICRON SYSTEMS ARCHITECTURE

Department of Computer Science
California Institute of Technology

1. Overview and Summary

1.1 Scope of this Report

This document is a summary of the research activities and results for the five-
month period, 1 November 1987 to 31 March 1988, under the Defense Advanced
Research Project Agency (DARPA) Submicron Systems Architecture Project.
Previous semiannual technical reports and technical reports covering parts of the
project in detail are listed following these summaries, and can be ordered from the
Caltech Computer Science Library.

1.2 Objectives

The central theme of this research is the architecture and design of VLSI
systems appropriate to a microcircuit technology scaled to submicron feature sizes.
Our work is focused on VLSI architecture experiments that involve the design,
construction, programming, and use of experimental message-passing concurrent
computers, and includes related efforts in concurrent computation and VLSI design.

1.3 Highlights

Some highlights of the previous five months are:

e The Ametek Series 2010, a second-generation medium-grain multicomputer
developed as a joint project between our research project and Ametek Computer
Research Division, was announced as a commercial product. A 16-node
engineering prototype has been demonstrated running numerous application
programs. (See section 2.1 and the paper "The Architecture and Programming
of the Ametek Series 2010 Multicomputer" in the appendix.)

e Enhancements to the Cantor programming system (section 3.1).

* Reference definition of the functions of the Cosmic Environment and Reactive
Kernel (sections 3.2 and 3.3).

e High-quality self-timed VLSI designs are being produced by a compilation
procedure that is now fully automatic (sections 4.1 and 4.2).

* Fast "Mesh Routing Chips" (section 4.5).

I
I -1-

I

I

2. Architecture Experiments I
2.1 Second-Generation Medium-Grain Multicomputers* 3
Chuck Seitz, Alain Martin, Bill Athas, Charles Flaig, Jakov Seizovic, Craig Steele,
Wen-King Su 3

On 19 January 1988, the Ametek Series 2010 multicomputer was announced at
the 1988 Hypercub• Conference in an invited talk by Chuck Seitz. This is the first
multicomputer to reach our goal for the second generation of multicomputers of I
a 100x improvement over the first-generation hypercube multicomputers in the
relationship between communication and computing performance. A paper on
"The Architecture and Programming of the Ametek Series 2010 Multicomputer,"
to appear in the proceedings of the 1988 Hypercube Conference, is included as an
appendix to this report.

In this same week, a 16-node engineering prototype of the Ametek Series 2010
was demonstrated and benchmarked running application programs. All of these

programs had been developed and run previously on Cosmic Cubes, Intel iPSC/1s,
or "ghost cubes." In all cases, the programs ran correctly on the Ametek Series
2010, requiring only compilation and linking with the appropriate compatibility
libraries. In March 1988, a 16-node system with 20 Mflop vector floating-point
accelerators on each node was demonstrated running an edge-detection benchmark
at 170 Mflops. Systems at the centerline design point of N = 256 nodes will be I
capable of a peak performance of 1 GIPS, 5 Gflops, and 5 Gb/s network bilateral
bisection bandwidth.

The announcement and demonstration of the Ametek Series 2010 was the
culmination of a 16-month joint development program with Ametek Computer

Research Division. Our Caltech project provided the architectural design, routing I
chip designs and prototypes, and sys-Tem software consisting of the Reactive Kernel
(RK) node operating system and tl] Cosmic Environment (CE) host runtime
system. Ametek provided the deLdil logical designs, physical designs, parts,
assembly, and construction of the prototypes to our specifications and designs.
Ametek also ported RK, and wrote the necessary interface routines to CE.

Considering the complexity of this project (new architecture, new system
software, new custom mesh routing chips, new node design, new host interface,
and new packaging), it proceeded very smoothly. The RK port required only two I
months for the Ametek system-programming team, and about 90%g of the resulting
system is identical to C source code provided by Caltech. The only serious problem
that occurred in the entire project was routing chips that did not function correctly

* This segment of our research is sponsored jointly by DARPA and by grants from

Intel Scientific Computers (Beaverton, Oregon) and Ametek Computer Research
Division (Monrovia, California).

S|I

on first silicon. This problem was traced to a missing contact cut and mistake in the
signal naming that did not allow this error to be detected in the usual extraction and
switch-level simulationr process. The second-pass silicon on this self-timed SCMOS
chip, one of two independent mesh routing chip designs, functioned correctly. The
other design worked correctly on first silicon.

Ametek has non-exclusive licenses to Caltech patents on the Cosmic Cube
architecture and message-passing mechanisms, to Caltech patents on mesh routing
chip organization, and for Caltech system software. As part of this license
arrangement, Ametek will be contributing a 256-node system to Caltech. An
allocation of cycles on this system will be made available to guest researchers, as is
currently done with our Cosmic Cubes and iPSC/1.

2.2 Mosaic Project

Bill Athas, Charles Flaig, Glenn Lewis, Don Speck, Wen-King Su, Chuck Seitz

The Mosaic C is a message-passing MIMD multicomputer with single-chip
nodes. The stipulation that the nodes fit on a single chip limits the storage for
each node, so that relatively fine-grain concurrent programming techniques must
be used. We are working toward building a 16K-node Mosaic system using nodes
fabricated in 1.21Am CMOS technology, with a near-term milestone of a 1K-node
system using nodes fabricated in 2Asm CMOS.U The status of the Mosaic C chip design is described in section 4.4, and the
current work on the Cantor programming system that we shall use for programming

* the Mosaic is described in section 3.1.

2.3 Cosmic Cube Project

I Bill Athas, Michael Lichter, Wen-King Su, Jakov Seizovic, Chuck Seitz

This section summarizes the current usage and the hardware and software status
of our first-generation multicomputers, the Cosmic Cubes and Intel iPSC/1 d7.
These systems continue to operate reliably. The major system software changes
introduced in the fall 1987 have caused no significant problems, and have improved
the compatibility between the Cosmic Cubes, iPSC/1, "ghost cubes," and the
Ametek Series 2010.

Overall usage has been moderately heavy. The most time-consuming application
in this period from within our own group have been an extensive series of simulations
by John Ngai concerned with the maximal utilization of networks with faulty routers
or channels (see section 4.6). Supersonic flow computations being performed by
students and faculty in Aeronautics at Caltech continue as the largest share of
outside use. Other guest users include David Mizell's group at ISI, who have been
experimenting with distributed simulations, and several researchers doing neural
network simulations.

I3

I

Neither the 64-node nor 8-node Cosmic Cubes has exhibited a hard failure in this I
five-month period. These cubes have now logged 3.2 million node-hours with only
three hard failures. The calculated node MTBF of 100,000 hours reported before
these machines were constructed was extremely conservative. A node MTBF in
excess of 1,000,000 hours is probable, and can be stated at a 50% confidence level.

Our Intel iPSC/1 d7 (128 nodes) was contributed to the Submicron Syst•."s I
Architecture Project as a part of the license agreement between the Caltech
and Intel, and is accessible via the ARPAnet to other DARPA researchers
who may wish to experiment with it. To request an account, please contact
chuck~visi. caltech. edu. Delivery of the alpha test unit of the new Ametek Series
2010 system is anticipated in about two months. This system will be available for
outside use on a similar basis.

I
I
I
I
I
I
I
I
I
I
I

--. U
I

I 3. Concurrent Computation

I 3.1 Cantor

Bill Athas, Nanette Jackson, Chuck Seitz

Continuing research using the Cantor programming system has focused on
writing application programs, and on refining the Cantor programming model. Our
goal in writing application programs is to develop programs that are suitable for
execution upon fine-grain multicomputers, such as the Mosaic C. Our experience
from writing programs in Cantor is used to refine the Cantor language definition,

I and the instrumentation of these programs has provided the essential parameters
for the design both of the Mosaic C and of an experimental Cantor Engine.

New applications programs written in Cantor include a program to enumerate
paraffin isomer molecules, a program to test for graph isomorphism, and a program
to analyze a chessboard for a checkmate configuration and report the possible moves

I to escape checkmate. This latter program is over 750 lines of code.

From these programs, plus the programs previously reported, we have observed
I three general paradigms for writing concurrent programs in Cantor.

1. The first paradigm is the transformation of functional or dataflow programs
I into Cantor programs. The transformations applied are systematic and the

application of continuations and futures is straightforward.

I 2. The second paradigm is the transformation of a program specification into a
Cantor program. The typical problems from this area are combinatorial searches
using a breadth-first or divide-and-conquer approach. However, the resulting
Cantor object graphs are not trees but are series-parallel (S-P) graphs. The S-P
graphs are formed from the factoring of recursions into two parts: the invocation
of the recursive call, and the rendezvous with the return from the recursion.

3. The third paradigm, and by far the most interesting, is the object program as an
apparatus for performing a computation. A simple example is the wheel-driven
prime sieve, in which the computation is represented by a number generator
called the wheel and the infinite sieve. More interesting examples are simulation
in which each object in the simulation is represented by a Cantor object.

Our latest revision of Cantor is version 2.2. This version supports dynamically-
allocated vectors and functional abstraction. Cantor 2.1 supported vectors in which
the size of the vector was computed at compile time. This restriction supported
efficient compilation of vectors, but was of limited usefulness. We often found that

vectors are combined into larger vectors, in which the size of the component vectors
is data-dependent. Thus, Cantor 2.2 supports vectors that are allocated on demand.

I

I

Cantor 2.2 also provides for functional abstraction over expressions. Previously, I
functional application was used to produce future reference values for new objects.
Functions can now produce a value of any type. The invocation of a function is
quite similar to creating a new object. The function is expected to produce a list
of return values for the caller. The list of return values is passed back to the caller
by message-passing. In the interim between calling a function and receiving the list
of return values, the caller leaves the running state. All messages received between
calling a function and receiving the reply message are enqueued. Once the reply
message returns, the object is again a candidate for execution, and all messages that m
were enqueued are processed using the normal execution rules. Because calling a
function causes the caller to leave the running state, the context for the caller must
first be saved. The saving of context is performed by the compiler using live-variable
analysis.

Our next refinement for the Cantor programming system is to provide a facility I
for supporting custom objects and functions, namely, machine code that has been
separately prepared, but which is compatible with the Cantor execution model. Our
plan for incorporating custom objects and functions into Cantor are to provide for
separate compilation of Cantor object definitions and functions, and then link the
native definitions with the definitions for custom objects and custom functions.

The latest stable and distributed version of Cantor is 2.0. It is expected that
version 2.2 will become available for distribution to other research groups in mid-

summer.

3.2 The Cosmic Environment

Wen-King Su, Chuck Seitz

The Cosmic Environment (CE), our generic, portable multicomputer interface,
has been augmented with the Unix standard 10 libraries. This new feature was
made possible by the addition of RPC messages. A RPC message is identical to
a normal message, with the exception that a program has the option of selectively
waiting for a reply message. When a program issues an xrecvrpc, the program
is blocked until a RPC message is received. The message is then returned to the

process.

The "ghost cube," a multicomputer simulator that is made of a group of NFS-
connected UNIX computers or workstations, has proved to be very popular. Ghost
cubes now have a hook for running the debugger program. Users can run dbx on
their node programs and test their programs fully on a ghost cube before moving

them unmodified to a real multicomputer. The Cosmic Environment now supports i
the original Cosmic Cubes, the Intel iPSC/1, ghost cubes, and the new Ametek
Series 2010.

The documentation for CE version 7.2 and for the Reactive Kernel is now

completely up-to-date. The latest edition of "The C Programmer's Abbreviated
-6-i

I

Gu;de to Multicomputer Programming" (Caltech-CS-TR-88-1) was completed in
January 1988, and 300 copies were distributed to our user community. CE has
now been distributed to well over 100 sites in the United States, Canada, Western

Europe, Scandinavia, and Israel.

3.3 The Reactive Kernel

Jakov Seizovic, Chuck Seitz

The Reactive Kernel (RK) has been successfully ported to one of the second-
generation machines, the Ametek 2010, and has been running reliably on thQ
system for the past three months. This uneventful port has demonstrated that our
goal of making RK highly portable was achieved. The careful layering of the RK
structure, with well-defined interfaces between the layers, has enabled the testing
and tuning RK by incrementally adding more complex features, without interfering
with the already tested ones. Much of this activity has been concerned with trying
to get as much performance as possible out of the message system. The following
back-reference problem is an example of this kind of tuning.

Consider the following program fragment, which occurs frequently in programs
with the reactive primitives:

p = xmalloc (length);
build-the.message (p);

xsend (p.node .pid);

At the allocation time, a data structure called a descriptor, which contains the
relevant information about the allocated block, is associated with the block.
This scheme creates a back-reference problem; that is, a problem of finding the
appropriate descriptor given the pointer to a particular memory block.

An obvious solution is to keep the descriptor pointer, or the whole descriptor,
within the memory block itself. However, this solution is not satisfactory, because

misuse or overwriting these pointers or descriptor by user processes can cause an
operating system error. What we need is a dictionary, a set representation with
the insert, delete, and member operations. The set elements are descriptors, and
the keys are pointers to the memory blocks. The algorithm used in RK makes a

compromise between the time and space complexity. The idea of the algorithm is
as follows: in order to access an element of the set, we perform a search along an
N-ary tree for k steps, whereby with each step we reduce the number of possible
elements by a factor of N. After k steps we are left with at most n = N,'.. Nk
possible outcomes, and can resolve the remaining ambiguity, if any, by a sequential
search.

Given the size of the memory used for messages, the average number of messages
in the memory, the distribution of message sizes, and the cost function representing
the balance between the memory utilization and the time required to access an

-7-

I

element of the set, we are able to find an optimal configuration. Since the parts I
of the data structure are dynamically allocated, it is even possible to change the
configuration 'on-the-fly,' after obtaining the information about the current message

traffic. If the reconfiguration is performed at the point when there are no messages
in the system, it can be done wiLh esseintially zero cost.

The only important addition to RK functions that we are planning is a variant 3
of the standard spawn function that places a process automatically. Associated
with this addition will be an improved mechanism to cache process code, so that
the speed of spawning a new process will be comparable to that of message passing.
This addition is part of our long-term plan to make the semantics of a subset of RK

message and spawning functions identical to those of Cantor (section 3.1).

3.4 Concise - A Concurrent Circuit Simulator*

Sven Mattisson, Lena Peterson, Chuck Seitz H
The concurrent circuit simulation program, Concise, currently runs under the

Cosmic Environment with the reactive primitives on UNIX computers; on all forms
of multicomputers, including ghost cubes; and also on a Sequent under the Cosmic

Environment.

Experimental modifications have been made over the past several months in
order to make clustering of tightly coupled circuit nodes possible. The clustered

"difficult" nodes are solved by a direct method, thus increasing the convergence rate I
for many circuits, both digital and analog. An investigation of automatic circuit

partitioning methods is currently underway.

In another effort, Concise has been used by Anthony Skjellum in the Chemical

Engineering Department at Caltech for the simulation of distillation columns. This

work has shown that it is possible to use Concise to simulate dynamic systems that I
are not at all like circuits. As part of this effort, Concise has been modified to make

it easier to install models of other kinds of "devices."

This work on Concise will be presented in two papers at the IEEE International
Symposium on Circuits and Systems (ISCAS) in Helsinki, June 1988.

3.5 Transformational Derivation of Distributed Algorithms

Kevin S. Van Horn, Alain Martin

In the past several months we have begun to develop a transformational method

for deriving concurrent programs, with an emphasis on the derivation of distributed
programs. A transformational derivation of a concurrent program proceeds as

* This segment of our research is a joint project between the Caltech Submicron

Systems Architecture Project and the Department of Applied Electronics at the

University of Lund, Sweden.

-8-I

follows. Given a problem to solve, cne first produces a simple, easily-understood
program with a straightforward correctness proof. This program may be inefficient,
involve globally shared variables, make no use of message-passing, and may not
even have any explicit concurrency. One then applies a series of transformations to
this program, proving any conditions which must hold for the transformation to be
valid, until one obtains an efficient distributed program.

There are several advantages to such a method. One is that the conceptual
structure of the algorithm becomes much clearer. The original program expresses
the essence of the algorithm, which is elaborated by succeeding transformations
that, for example, implement global tests and updates of global variables, and detect
termination. Another advantage is that the correctness proof of the final program
is broken into smaller, more easily managed pieces. Perhaps the biggest advantage
is that it allows one to work out and prove correct an intermediate solution to the
problem before deciding on many details of the final algorithm.

The notation used is a variant of Chandy and Misra's UNITY. We are at present
restricting ourselves to terminating programs in order to avoid some thorny issues
that arise with non-terminating programs, although it appears that many of the
transformation techniques developed so far should be applicable to both. A program
in this notation consists of a declaration of variables with their initial values, a set of
assignments, a termination condition, and a result expression. The operation of such
a program can be described informally as follows: repeatedly (and fairly) choose an
assignment or the termination condition; if an assignment is chosen then execute
it, otherwise evaluate the termination condition and if it holds then terminate,
returning the value of the result expression in the present state. The kinds of
transformations we apply to these programs include data refinement, distributing
and/or combining assignments, superposing new variables, removing superfluous
variables, and strengthening the termination condition.

This transformational method has been used to derive a number of algorithms,
some original and some preexisting. These include a distributed best-first search
algorithm, various all-points shortest path algorithms, two termination-detection
algorithms, and a distriuted minimal spanning tree algorithm that appears to be
a significant improvement over that of Gallager et al.

3.6 A Multicomputer Z-Buffer Program

Glenn M. Lewis, Wen-King Su, Chuck Seitz

As a demonstration program for multicomputers running the Reactive Kernel,
we have written a distributed version of the usual graphics Z-buffer program. It
takes input from any graphics rendering program that generates three-dimensional
coordinates and color, and sorts the information such that the result simulates a
true hidden-line representation of the image.

-9-

I

4. VLSI Design I

4.1 Standard-cell Placement and Routing Program

Steve Burns, Pieter Hazewindus, Alain Martin

To facilitate rapid layout of chips, we have designed a new placement and routing

program, gladys. This program takes as input a circuit description consisting of
a set of gates, which may be generated by the circuit compiler. This description
is then converted into a standard-cell layout. The result is a number of towers of I
standard cells, with routing channels in between towers. In the standard cells, no
metal2 is used, so that the router can route between towers over standard cells.

The program consists of a placement algorithm, which attempts to reduce wire
lengths by simulated annealing. Thereafter, global routing is done to route between

cells in non-adjacent towers, and finally, a channel router does local routing in
the channels between towers, using a greedy three-layer routing algorithm. The
router has no global considerations when deciding on the location of wires; hence,
the algorithm is very fast (it typically routes a medium-sized chip in a matter of
seconds).

We have compared this algorithm with layouts generated by MOSIS's FUSION
tool. The FUSION layout is about 50% larger if no placement is specified, and
about 10% larger if it is supplied with the result generated by the previously

mentioned placement algorithm. We expect to be able to reduce our layout size
by 5-10% by using a better channel routing scheme, and by incorporating some
global optimizations.

As a final step in the automatic transformation of a program into a chip, a
padrouter needs to be constructed.

4.2 Bit-serial Routing Chip Compiled from a High-level Description

Steve Burns, Alain Martin

We have designed and fabricated a self-timed bit-serial routing chip compiled di-

rectly from a program. All stages of the compilation were performed automatically, I
using a procedure with the following structure:

(i) parse tree generation, i
(ii) tree-based (global) optimization,

(iii) operator generation,

(iv) peephole (local) optimization,

(v) operator to standard-cell binding,

(vi) standard-cell placement, and

-10-

I

(vii) inter-cell routing.

Stages (i) through (v) were performed using a PROLOG-based 'CSP to Self-timed
Circuit' compiler hinted at in the last semiannual DARPA report, and described in
more detail at the 1988 MIT VLSI Conference. The placement and routing steps
were performed by the MOSIS FUSION system.

The "Compiled MRC" was tested and functions correctly with a throughput
of 5.6 MHz (four-phase handshake in 180 ns). The latency through a single router
element is 253 ns. The performance of this chip is somewhat disappointing, caused
mostly by an inadequate implementation of step (v). A more careful implementation
of the 'operator to standard-cell binding' step should increase the performance of
the compiled chips by a factor of two.

Global optimizations will also improve the circuits produced by this compilation
method. In particular, reshuffling of communication actions will, in many cases,
produce more efficient (in terms of area and speed) implementations. However, in
general, reshuffling introduces deadlock. Global analysis of the system is necessary
to show that reshuffling will not introduce deadlock. Currently, this global analysis
is performed manually, and annotations are added to the source programs specifying
when the communications may be interleaved. We are working to automate
this analysis. The "Compiled MRC" included a router element with reshuffled
communications. The throughput of the reshuffled router increased 20% to 6.7 MHz
(four-phase handshake in 148 ns). The latency was reduced more dramatically to
81 ns.

4.3 Characterization of Communication Patterns with Constant Re-
sponse Time

Tony Lee, Alain Martin

In a system of identical communicating processes connected in a regular
structure (linear array or mesh) -- such systems are usually called sys•lMic arrays-,
the order of communications of a process with its neighbors can be modified to
improve performance. However, it is, in general, difficult to predict the effect of
such a reordering: it may cause deadlock, or it may lead to a behavior where
the "response-time" of a process to a communication depends on the number of
processes in the systems.

It so happens that the reshuffling of actions in a handshaking expansion that we
perform during the compilation of a communicating process into self-timed circuits
have the same properties: although they are introduced to improve preformance,
they may lead to deadlock or to a variable response-time.

We have defined a necessary and sufficient condition for a communication
pattern in a linear array to be deadlock-free and to have a constant response-time.

-11-

4.4 Mosaic Elements I
Bill Athas, Charles Flaig, Glenn Lewis, Don Speck, Wen-King Su, Chuck Seitz

The Mosaic C chip is composed of three main parts: RAM & ROM, channels,

and processor. Our strategy for verifying the design of this very complex chip and
characterizing its yield on MOSIS runs is initially to fabricate and test the three
main parts separately. After the parts have been well characterized, their layouts
will be combined onto a single chip. All the sections except for the ROM have been

designed and layed out. The RAM and channels sections have been fabricated and
verified. The final assembly of the processor and o:f the entire chip are expected to

be accomplished this summer.

The target technology for the Mosaic C is MOSIS SCMOS with 0.6/jm < A <
1.5j.m. Target maximum chip size is 36mm 2 , or 100MA2 with A = 0.6jim, and

16MA2 with A = 1.5/sm. Speed, storage size, and top-level floorplan will necessarily i
vary with feature size.

The architecture of the Mosaic C and the design of the Mosaic C chip are

described in previous semiannual technical reports.

4.4.1 Mosaic C dRAM I
Our basic strategy has been to develop a 4-transistor dRAM that is a low-risk

design with a relatively large area, and a 2-transistor dRAM that is a higher-risk I
design but has a relatively small area. The following efforts have been aimed at
improvements in the 4T dRAM:

Decoders: Due to pitch constraints, the RAM and ROM row select decoders must be
precharged. Our desire to charge and discharge as few decoder outputs as possible
leads us to domino NAND gates.

However, precharging through a series transistor chain can be very slow.
Because the transistors are turning off as charge is drained, the precharge time (and
hence the input setup time) is cubic in the chain length. The setup time allowance
for the decoder is zero, so each internal node must have its own precharger. To
make room for those prechargers, series chains must be coalesced into trees, with a
branching width limited to 70X so that internal nodes remain accessible and stay
small enough to not need area-consuming metal strapping.

For speed it's conventional to predecode bit pairs so that fewer series transistors

are needed. However, with the tapering transistor sizes afforded by the tree
structure, the time saved by removing half of the transistors does not recoup the
predecode overhead. Predecoding only gains speed if applied just to the leaves of
the trees, where the predecode time is not in the critical path.

RAM simulation: We have discovered a bug in SPICE2G.6 which greatly I
overestimatts the effective gate capacitance of pass transistors. When a pass

-12- I

I transistor is cut off by back-gate bias, the CMEYER routine calculates full gate
capacitance, as if the MOS capacitor were in accumulation, when it should be in

* deep depletion with a much lower capacitance.

SPICE2G.6 also neglects the channel-to-bulk capacitance, though that bug at
least has an easy workaround (increase the source area by the amount of gate area).

4.4.2 Channels

I The width of the channels in our current designs has been increased to 4 bits.
The registers and bus drivers for the processor interface have been completed, and
state tables for the control circuitry have gone through a first draft.

4.4.3 Processor

The Mosaic C processor datapath design and layout is complete, and it simulates
correctly with MOSSIM. Our efforts of the past several months have included
continued checking of the microcode, and attempts to improve the speed of the
control PLA.

I 4.5 Self-Timed Mesh Routing Chips

Charles Flaig, Chuck Seitz

Samples of the Mesh Routing Chips (MRCs) sent to MOSIS for fabrication in
September were received and tested in December, and functioned correctly. The
95% yield was excellent, but the speed was below expectations. The cycle times for
these chips was about 100ns in 3Arm SCMOS, which was a factor of two less than
expected. The fallthrough time for each FIFO stage was also high, at about 15-20ns.
A large part of the problem was traced to long wires in the 2/4-cycle conversion
circuitry. A design oversight placed excessive capacitive loads on relatively weak
transistors. There were also some "hurry up" design shortcuts that were detrimental
to the speed. Based on experience with another MRC design, this design would
have exhibited a satisfactory cycle time of about 33ns in 1.6Atm SCMOS, but our
studies of the internal timing of this chip revealed a way to increase the speed quite
dramatically.

A new version of the MRC was begun in December. This design corrects all of
the known problems and shortcuts in the original MRC, but also implements the
FIFOs and internal switching with a more efficient signaling scheme. The external
signaling conventions must still conform to the MRC specification. The major
internal changes are as follows:

1. New FIFO stages. The previous FIFOs used interconnected C-elements which
would store a flit (flow control unit) in two successive stages. The new FIFOs use
some additional state and timing information to produce a load pulse of fixed

-13-

I

i

width, and thus store a flit in a single stage. While this does not significantly I
affect the fallthrough or cycle time, it increases the amount of storage available
for blocked packets by a factor of two.

2. New 2/4-cycle converters. The fixed width load pulse produced by the new
FIFOs allowed the construction of a simplified, and much faster, 2/4-cycle
conversion circuit for an interface to ýhe external 2-cycle request/acknowledge
signaling. This conversion circuit also introduces a limitation on the minimum
cycle time for the output of a channel, which we must balance with an internal
delay on the output request driving logic.

3. An improved decrementer. The old decrementer had badly sized transistors
which resulted in very poor performance for decrementing large numbers.

4. Improved topology to minimize the length and capacitance of connecting wires,
as well as to eliminate the need for any wasteful "padding" space previously
needed to compose all the cells. As a result, the new MRC core is about 20%
smaller.

SPICE simulations showed that the new MRC should indeed have much better
performance than the original. To get a solid test of the new FIFO and 2/4-cycle
converter stages, a 64-stage FIFO was constructed and sent out for fabrication in
314m SCMOS at the end of January.

This FIFO returned early in April, and was promptly tested. The new FIFO
fallthrough time is about 7.7ns, an improvement (same technology) of a factor of
two over the original MRC. The Request-4Acknowledge cycle time is about 10ns,
giving an overall cycle time of about 2Ons (50M flits/s). This is five times faster than
the original MRC, and exceeded our expectations by a factor of two! In a complete

MRC, rather than just a simple FTFO, there will be longer wires and larger loads,
but many circuits have also been tweaked slightly, so it should also have a 2Ons
cycle time. Fabrication in a 1.61Am feature size usually triples the speed of circuits,
but in this case the cycle time will clearly be limited by the inductance of the
chip leads. A low-inductance package will be critical for realizing the exceptional
performance that the chip itself can deliver. We are expecting these designs to i
achieve a throughput well in excess of 100M flits/s.

All of the cells have now been laid out and individually simulated for the
new MRC. A few simulations of compositions have to be performed next to try
to minimize the internal cycle time. Then the complete MRC can be composed
and switch-level simulated using Mossim and the AutoMossim driver program. It
is expected that this can be done by late April and, barring unexpected problems,
we should be able to send it to fabrication by early May.

If successful, we expect this new MRC chip to replace the MRC currently used I
in the Ametek Series 2010 multicomputcr. With help from George Lewicki, this

-14- i

I

I design will also be transferred to an Intel fabrication process for use in a future
Intel multicomputer.

I 4.6 Adaptive Routing in Multicomputer Networks

John Y. Ngai, Chuck Seitz

We continue to investigate the use of adaptive routing techniques to improve
and sustain the performance of multicomputer communication networks. We have

* found what we believe is a scheme that is simple enough to be realizable in practice,
and that outperforms even the highly evolved oblivious wormhole routing schemes.
Completion of this work and publication of Ngai's thesis is expected in the next six
months.

Our efforts have been divided into three different areas relating to three different
aspects of the Adaptive Cut Through (ACT) routing technique:

(1) Performance Analysis and Simulations: Extensive simulations of various traffic
patterns have been conducted. Some of the preliminary results were summarized
in the last semiannual report. A detailed summary will appear in the

* dissertation.

(2) Trial Implementation: Here efforts are focused in isolating and understanding

the major design trade-offs involved in a practical implementation of the ACT

router. The investigation is conducted as a student group design project in the
VLSI design class, with crucial contributions also from Charles Flaig and Glenn

* Lewis.

(3) Reliability Enhancement Studies. The single most important aspect of the
routing formulation is its capability to exploit the existence of multiple paths

intrinsic in most of the richly connected multicomputer networks. In addition
to potential performance improvements, here our efforts are to investigate
and evaluate the potential reliability enhancements that can be achieved. In
particular, motivated by the desire to build high-performance networks through
hardware realization of the routing operations, we look for the solution which
allows us to continue the use of the original hardware routers systematically

with little or no change in the routing hardware. To this end, we have developed
a simple framework based on convexity and reachability defined with respect
to the original routing relations. Extensive computations and simulations are
conducted, with the result that the loss of a few percent of the routers or nodes
will still allow well in excess of 80% of a multicomputer to remain in service.

I
I -15-

I

I

4.7 The Notorious CIF-flogger Program I
Glenn Lewis, Chuck Seitz

The CIF-flogger is a multicomputer program for flattening CIF files, rasterizing
the geometry, and for performing parallel operations on the geometry in stripes.
It runs under the CE/RK system, and hence, on most available multicomputers,

including the Ametek Series 2010.

CIF-flogger currently supports simple bloat, shrink, and logical operations on

the flattened geometry, and hence can perform most geometrical design-rule checks. I
It will eventually provide complete design-rule checking, well checks, and circuit

extraction. Based on timings on the iPSC/1, CIF-flogger is expected to perform

design rule checks for 100K-transistor chips in much less than is per rule on second-
generation multicomputers.

4.8 Pads and Pad Frame Generation

Charles Flaig, Glenn Lewis, Chuck Seitz

Motivated in large part by the variety of mesh routing chips (MRCs) being
designed, a similarly large variety of new pad circuits have been designed for
A = 0.61zm, 0.8pum, and 1.0jm MOSIS SCMOS processes. The unusual features
of these designs include:

1. The use of longitaidinal (bipolar) clamp transistors for static and overvoltage
protection. These protection circuits appear to be very effective.

2. Experimental use of pad spacings that are less than the standard MOSIS 200/Zm
pad pitch. MRCs run with A = 0.81zm have used a 191A = 152.8m-m= 6.02mil

pad pitch with 33 pads per edge. When one run of 50 chips was bonded in
the standard MOSIS 132-pin PGA package* (small package well variety), we
observed 83% yield on this MRC overall, and 100% bonding yield. Output

edge times were less than 2ns, and these (self-timed) MRCs operate at about
30Mflits/s.

Our thanks to George Lewicki at MOSIS for tolerating and perhaps even
encouraging these experiments.

These efforts, and related efforts in helping MOSIS with standard frames, have
required the generation of many pad frames. Thus, the pad library was created

along with some tools that have automated generation of pad frames, and have

saved countless hours of tedious work.

* Other users of the MOSIS 132PGA packages are advised to study the

documentation on this very nice (as PGAs go) package, noting in particular that

12 of the pins have about 5x lower resistance and inductance than the rest. We
have used these pins for Vdd and GND.

-16- I

I

I 4.9 SunCIFP

Glenn Lewis, Wen-King Su, Chuck Seitz

A new version of the CIFP program has been written and is available for
distribution. It runs on Sun workstations, and creates a display of CIF geometry

i on a Sun window.

I
I
I
I
I
I
I
I
I
I
I
I
I
I -17-

I

I
To be published in the Proceedings of the 1988 Hypercube Conference I

The Architecture and Programming
of the Ametek Series 2010 Multicomputer I

Charles L. Seitz, William C. Athas, Charles M. Flaig,
Alain J. Martin, Jakov Seizovic, Craig S. Steele, Wen-King Su

Department of Computer Science
Califoraia Inastitute of Tecdnology I

Background Our other goals included a streamlined and easily
During the period following the completion of the Cosmic . layered set of message primitives, a node operating
Cube experiment [1], and while commercial descendants of system based on a reactive programming model, open
this first-generation multicomputer (message-pasing con- interfaces for accelerators and peripheral devices, and
current computer) were spreading through a community node performance improvements that could be achieved
that includes many of the attendees of this conference, economically by using the same technology employed in
members of our research group were developing a set of contemporary workstation computers.
ideas about the physical design and programming for the By the autumn of 1986, these ideas had become suf- I
second generation of medium-grain multicomputers. ficiently developed, molded together, and tested through

Our principal goal was to improve by as much as two simulation to be regarded as a complete architectural de-
orders of magnitude the relationship between message- sign. We were fortunate that the Ametek Computer Re-
pawing and computing performance, and also to make search Division was ready and willing to work with us to I
the topology of the message-passing network practically develop this system as a commercial product. The Ametek

invisible. Decreasing the communication latency relative Series 2010 multicomputer is the result of this joint effort.
to instruction execution times extends the application Architecture
span of multicomputers from easily partitioned and
distributed problems (eg, matrix computations, PDE Overview
solvers, finite element analysis, finite difference methods, Each Ametek Series 2010 node includes a 25MHz Motorola
distant or local field many-body problems, FFTs, ray 68020 processor with a M68881 or M68882 floating- I
tracing, distributed simulation of systems composed point coprocessor, zero-wait-state memory management
of loosely coupled physical processes) to computing hardware, up to 8MB of memory, and a VME interface
problems characterized by "high flux' [21 or relatively for accelerators or peripheral controllers. These nodes are
fine-grain concurrent formulations [3, 41 (eg, searching, about an order of magnitude faster and have about an
sorting, concurrent data structures, graph problems, signal order of magnitude more memory than those in the first-
processing, image processing, and distributed simulation generation systems. The multicomputer is normally hosted
of systems composed of many tightly coupled physical from Sun-3 workstation computers, which also use M68020
processes). Such applications place heavy demands on processors; hence, the native Sun compilers are able to
the message-passing network for high bandwidth, low generate process code for the nodes.
latency, and non-local communication. Decreased message What most distinguishes the Ametek Series 2010 mul-
latency also improves the efficiency of the class of ticomputer from the first-generation "hypercubes" is its I
applications that have been developed on first-generation message-routing and message-handling hardware. Given

systems, and the insensitivity of message latency to our objective not only of keeping pace with the order-of-
process placement simplifies the concurrent formulation of magnitude advance in node computing performance, but
application programs. of improving the relationship between communication and

computing latencies, we were seeking a major improvement
in communication performance.

The way in which this improvement in message
performance was achieved was with a combination of
organization and technology. The Ametek 2010 does
not use a binary n-cube (hypercube) connection network,
but instead uses a two-dimensional routing mesh of high-
performance custom routing chips. This low-dimension
network minimizes latency for a given wire bisection of

I

the network by allowing more parallel wires and higher require some comment. In conditions of large applied load
bandwidth for each channel. The "wormhole" routing to a mesh network, the performance is largely determined

method, unlike store-and-forward routing, does not use by the bisection. Hence, it is desirable to keep the

storage bandwidth or computing cycles in nodes through mesh configurations as close to square as possible. A

which a message is routed. Packets are injected into the 4x16 64-node machine will function correctly, but has

network by the source node and leave the network only a smaller bisection than an 8x8 configuration. Under

at the destination node. The entire edge of the mesh an assumption of fixed wire bisection, a two-dimensional

is available for hosts or peripheral devices. In order to network minimizes latency 13,81 for our centerline design

reduce the software component of the message latency, the poir.t of N = 256, a 16 x 16 mesh. Smaller machines have

nodes include a microprogrammed second processor that a surplus of network bandwidth, while larger machines

manages the send and receive queues. are capable with intense, non-localized message traffic
of driving the message network to a state of moderate

Communication Network congestion and consequent noticeable latency. However,

The Ametek Series 2010 message network is composed of according to our simulations, low-dimension networks

a two-dimensional mesh of custom Mesh Routing Chips are very effective in source-queueing packets when the

(MRCs) 15]. The communication channels are 8 bits applied load exceeds the network capacity, such that

wide, and operate self-timed at well in excess of 20MHz, .the throughput of the network remains close to its peak

yielding a communication bandwidth per channel of at operating point.

least 20MB/s (16OMb/s). A higher channel bandwidth To realize this scaling in practice, the basic packaging

is feasible but not economic, since it would exceed even unit in the Ametek Series 2010 is a 4X4 submesh of

the sequential-access memory bandwidth in the nodes. A 16 nodes. The 4x4 submesh is built as an active

node that is sending and receiving concurrently at 20MB/s backplane, measuring 17 x 12 inches 2, into which the node

must on average be performing ten 32-bit accesses per ps. boards are plugged. These submeshes can be connected

Message packets advance directly from MRC to MRC vertically and horizontally with other 4x4 submesh units

in a blocking variant of cut-through routing [61 that we to construct systems up to 32x 16 = 512 nodes. Still larger

call "wormhole" routing [3,5,71. The time required to systems are perfectly feasible; however, to confine their

advance the head of a packet from MRC to MRC is vertical dimension, they would be constructed with special

only about two byte times. Thus, for example, the time backplanes with 2x8 or 1x16 submesh units.

required to send a 64-byte packet (8 double-precision

floating-point operands) from corner to comer in a 64- Node Architecture

node 8 x 8 mesh (distance 14) is 0.05(2 x 14 + 64)ps = 4. 6A's. The small network component of the message latency,

One may think of this packet as requiring 1.4I s for path although important in part for avoiding congestion by

formation and an additional 3.2/ss to spool the message sending packets through the network in short bursts,

through the channels. For message lengths that are typical requires equal attention to minimizing the "startup" time
of medium-grain multicomputer programs, the length in or software component of the message latency. The

bytes is considerably larger than the distance in the mesh; message primitives have accordingly been streamlined so

hence, the length-dependent component of the latency that messages are sent and received from dynamically

dominates, and the latency exhibits little sensitivity to allocated memory, and the node is an unsymmetrical two-

message distance. processor architecture. The M68020 and a microprogram-

The performance of this wormhole routing network controlled message interface processor share access to

cannot be compared by a single measure with the perfor- main memory and cooperatively maintain data structures

mance of the software-controlled store-and-forward packet consisting of linked control blocks that point to message

cut-through message systems in first-generation multicom- pages. One structure includes the receive queue and

puters. The store-and-forward networks consume storage preallocated pages for incoming messages, and the other

bandwidth and computing cycles in the routing nodes, includes the send queue. Block transfers between

while accumulating a latency of several hundred As per memory and hardware queues in the message interface

hop. The case that is most critical for exploiting finer-grain processor are accomplished in static column mode, one of
concurrency (eg, relatively fewer instructions between mes- the efficient, high-bandwidth, sequential-access modes of
sage operations, and typically shorter messages) is short modem dRAM chips. The main memory bandwidth in

non-local messages. The same corner-to-corner message this mode is a 32-bit cycle each 80ns, or 50MB/s.

that is delivered in 4.6As by the Ametek Series 2010 mes- Static column mode is also used for the M68020 access,

sage network would be handled in a store-and-forward bi- with the most recently accessed column in each 1MB bank

nary 6-cube by the source, destination, and five interme- serving as a 2KB fast page, similar in effect to a cache

diate nodes, with a total latency of several ms. Thus, in set. Thus, a typical 4MB node maintains four fast pages

the important case of relatively short non-local messages, from which the 25MHz M68020 can run with no wait

the reduction in message latency approaches three orders states. Nodes with more memory have proportionately

of magnitude. more fast pages. The dRAM refresh is accomplished by

The scaling and congestion properties of the network hardware. The address translation unit is implemented

I

I
with fast static RAMs, with 8KB pages for the code, data, generation multicomputers.
and stack regions, and 256B pages for the dynamically Host Runtime System
allocated message region. Regions associated with the The host runtime system is derived from the Cosmic
same process are normally mapped into separate banks so T

that contiguous code, data, stack, and message references Environment system (CE version 7.2). The CE system I
will introduce no wait states. consists of a set of daemon processes, utility programs, aý,!

Messages that are longer than 256B are fragmented library routines. It handles the allocation of one or more
into packets with 256B payloads, so that long messages multicomputers, and supports uniform communication

will not block other traffic in the message system for long between UNIX and node processes. The UNIX processes
periods. The size of message pages and the maximum may all be on the hardware host, or may be distributed

packet length are the same, so that fragmentation and among multiple hosts on the same network.

reassembly are accomplished without copying. Taken The CE system supports numerous program develop-

together, the use of a fast dRAM sequential access mode ment features, and is commonly run not only as a host run-

and the remapping of packets to messages is very effective. time system for multicomputer, but also on single UNIX

Even with the software overhead of fragmenting and systems, across networks of UNIX systems, and on multi-

processors. It is a "combat-proven" system that has now
reassembling ng g messages, the asymptotic bandwidth in been distributed to more than 100 sites. Instructions forsending long messages from node to node is higher than obtaining a CE distribution are included in the program-
the bandwidth that the M68020 achieves copying blocks otiigaC itiuinaeicue nteporm
within the memory of a single node. c ming guide [91, which is available from the Caltech Corn-

withn te meoryof asinle nde.puter Science librarian.I
The Ametek Series 2010 node design does not com-

promise in any way with protection. A user process can User Programming
access only its own data and messages. The node hard- The reactive handler and its associated library support a
ware is designed to support not only multiprogramming, set of user interface routines that are analogous to those
but multiple users and virtual memory operation. used in the system interface between a hander and the

Each node also has a high-performance VME interface kernel. Although illustrated here as they are called from
for peripheral controllers (such as disk interfaces) and processes written in C, user interface routines also exist for
accelerators (such as a standard 20Mflop floating-point other languages.
vector processor). As usual, each process has a unique identifier consisting

of the node number and a process identifier within the

Programming node, viz: (node. p1d). Process spawning is dynamic,

The Ametek Series 2010 employs the same process model and can be initiated from any node or host process with

that was supported on the Cosmic Cubes and first- the function:

generation commercial systems. However, in order to spawn("filenaa.", node. pid. "")
streamline the message handling and to allow for efficient mlayerming ofe a evarety ofamesge functions thw prefimintie Also, as usual, messages are directed to processes, and are
layering of a variety of message functions, the primitive queued in transit, but message order is preserved betweenmessage functions are quite different from those used in pairs of communicating processes. Within the limits of
the first-generation multicomputers. The programming the computation being deterministic and not exceeding
system described here [91 was developed in our research available storage sizes, the results of a computation do not

group, and has been in regular use for the past year on the dependb on the si nes, the r oces ses a distrt ed .Cosmic Cubes and other multicomputers operated by our depend on the way in which the processes are distributed.
group. It was ported to the Ametek Series 2010 without Messages are sent and received from dynamicallyany notable difficulties, allocated memory that is accessed both by user processesand by the message system. Message buffers are arrays
Node Operating System of bytes with no presumed structure, and the C functions

The standard node operating system for the Ametek that return pointers to message buffers return maximally
2010 is a proprietary adaptation of a new multicomputer aligned pointers of type char*. Message space can be
operating system, the Reactive Kernel (RK). RK is based allocated by:

on a small kernel that dispatches to kernel processes p= -xalloc(length);
called handlers according to the tag in the message at
the head of the receive queue. Different handlers and where the length of the block pointed to by p is specified
their associated user library routines support different sets in bytes, and can be deallocated by:

of message primitives, as may be required for different xfree(p):
languages and applications. Different handlers may be
coresident in "subcubes" of the Ametek 2010, so that in the These functions are semantically identical to the usualUNIX mall.oc and free functions.
usual space sharing mode of operation, different programs When a message has been built in a block that hascan be run concurrently with different primitives. With

a suitable handler and library, the Ametek Series 2010
can support the message primitives of any of the first- xsend(p, node, pid);

I

The xsend function also deallocates the message block; Conclusion
that is, xsend(p....) is like xfree(p), except that it Taken together, the computing and communication perfor-
also sends a message. Thus, there is no need for blocking mance, scalability, open interfaces, I/O capability, new fea-
or for feedback that the message has been sent. When the tures, and system software of this second-generation mul-
function returns, the message block is gone. ticomputer represent to us the fulfillment of an "IOU" -

Messages can be received by: a working demonstration of the capabilities we have said
would be possible to include in a well-engineered multi-

p = xrecvb(); computer.

such that p then points to a new message. As indicated by
the "b" at the end of xrecvb, this is a blocking function Acknowledgments

that does nfu return uatil a message has arrived for the The regearch that !ed to the architectural design and
process. system software of the Ametek Series 2010 was sponsored

The execution of the xrecvb function is just like in part by the Defense Advanced Research Projects
allocating a message buffer with xmalloc, except that the Agency, DARPA Order number 6202, and monitored
length of the block allocated is determined by the length by the Office of Naval Research under contract number
of the message received. Once the message contents are N00014-87-K-0745; and in part by a grant from Ametek
no longer needed, the allocated space should be freed. Of Computer Research Division.
course, the message space can be freed with xf roe (p), but We very much appreciate the dedicated efforts and
it can also be freed by xsend(p. ...) if there is a message support of the employees and management of Ametek.
of the same length to send. It frequently happens in Certain of the techniques described here ._e the
message-passing programs that a message that is received subjects of patents filed by Caltech and by Ametek. The
is simply modified by a computation and then sent on to Cosmic Environment and Reactive Kernel are the property
another process. of Caltech, and are licensed to Ametek.

The non-blocking receive function is called xrecv. It
is required only for applications in which a process may References
need to probe for another message without giving up the
right to continue execution. The usage of the xrecv [1] Charle, L Seit2 , "The Cosmic Cube," CACM,
function is identical to xrecvb; however, it may return 28(1): 22-33, January 1985.
a NULL pointer if there is no message queued for this [2] J D Ullman, "Flux, Sorting, and Supercomputer
process. This behavior of the xcrecv function allows one to Organization for Al Applications," J of Parallel
write programs that can do other work while waiting for a and Distributed Computing 1: 133-151, 1984.
message; for example: [3] William J Dally, A VLSI Architecture for

while (1) (Concurrent Data Structures, Kluwer Academic

if (p = xrecvo) digest(p); Publishers, 1987.

else do-other.workO; [4] William C Athas, "Fine Grain Concurrent
Computations," Caltech Computer Science
technical report (PhD thesis) 5242:TR:87.

In such usage, the digest(p) and do.other.work() 15] Charles M Flaig, "VLSI Mesh Routing Systems,"
functions should return after a bounded time to call xrecv Caltech Computer Science technical report (MS
again, because calling xrecv or xrecvb when the next thesis) 5241:TR:87.
message in the node's receive queue is for another process
allows the kernel to save the state of that process and start [6t P Kermani and L Kleinrok, "Viortual Cut-
running the other process. The appearance of xrecv or through: A New Computer Communication
xrecvb in the code marks a choice point for switching the Switching Technique," Computer Network1 3: 267-
execution to another process, and it is in this sense that 286, 1979.
the scheduling is reactive or message driven. [71 William J Dally, Charles L Seitz, "The Torus

Programs may use these primitive functions directly, Routing Chip," Distributed Computing 1(4): 187-
or may use other classes of functions that are expressed in 196, Springer International, 1986.
terms of the "x" primitives. Extra information, such as a [81 William J Dally, "Wire-Efficient VLSI
message type, can be inserted into extra space allocated Multiprocessor Communication Networks," Proc
in a message buffer, and sent with a message. The 1987 Stanford Conference on Advanced Research
function used to receive typed messages can filter them in VLSI, MIT Press, 1987.
into separate queues of pointers (the messages themselves
remain intact) according to the type. For example, the user [9] Charles L Seitz, Jakov Seisovic, Wen-King Su,
interface functions defined for FORTRAN allow processes
to exercise discretion in the messages received according Multicomputer Programming," Caltech-CS-TR-

to any combination of message type and sender ID. 88-1, 1988.

I

California Institute of Technology I
Computer Science Department, 256-80

Pasadena CA 91125

Technical Reports I
April, 1988

Available from the Computer Science Department Library
Prices include postage and help to defray our printing and mailing costs.

Publication Order Form
If you wish to order any of the reports listed, complete this form and return it with your check or international money order (in *
U.S. dollars) payable to CALTECH. Prepayment is required for all materials.

.CS-TR-88-01 $3.00 C Programmer's Abbreviated Guide to Multicomputer Programming,
Seitz, Charles, Jakov Seisovic and Wen-King Su I

-5258:TR:88 $3.00 Submicron Systems Architecture
ARPA Semiannual Technical Report

-5256:TR:87 $2.00 Synthesis Method for Self-timed VLSI Circuits,
Martin, Alain
current supply only: see Proc. iCCD'87: 1987 IEEE Int'l. Conf. on Computer Design, 224-229, Oct'87

-. 5251:TR:87 $2.00 Conditional Knowledge as a Basis for Distributed Simulation,
Chandy, K. Mani and Jay Misra

____5250:TR:87 $10.00 Images, Numerical Analysis of Singularities and Shock Filters, PhD Thesis
Rudin, Leonid Iakov

.. 5249:TR:87 $6.00 Logic from Programming Language Semantics, PhD Thesis I
Choo, Young-il

.. 5247"TR:87 $6.00 VLSI Concurrent Computation for Music Synthesis, PhD Thesis
Wawrzynek, John

5246:TR:,7 $3.00 Framework for Adaptive Routing
Ngai, John Y and Charles L. Seitz

.5244:TR:87 $3.00 Multicomputers

Athas, William C and Charles L Seitz I
.5243:TR:87 $5.00 Resource-Bounded Category and Measure in Exponential Complexity Classes, PhD Thesis

Lutz, Jack H
5242:TR:87 $8.00 Fine Grain Concurrent Computations, PhD Thesis

Athas, William C.
. 5241:TR:87 $3.00 VLSI Mesh Routing Systems, MS Thesis

Flaig, Charles M

.5240:TR:87 $2.00 Submicron Systems Architecture
ARPA Semiannual Technical Report

.5239:TR:87 $3.00 Trace Theory and Systolic Computations
Rem, Martin I

-5238:TR:87 $7.00 Incorporating Time in the New World of Computing System, MS Thesis
Poh, Hean Lee

-5236:TR:86 $4.00 Approach to Concurrent Semantics Using Complete Traces, MS Thesis
Van Horn, Kevin S. I

-5235:TR:86 $4.00 Submicron Systems Architecture
ARPA Semiannual Technical Report

_.5234:TR:86 $3.00 High Performance Implementation of Prolog I
Newton, Michael 0

5233:TR:86 $3.00 Some Results on Kolmogorov-Chaitin Complexity, MS Thesis
Schweizer, David Lawrence

. .5232:TR:86 $4.00 Cantor User Report
Athas, W.C. and C. L. Seits I

I

Caltech Computer Science Technical Reports

-5231:TR:86 $2.00 Deadlock-Free Message Routing in Multiprocessor Interconnection Networks
Dally, William J and Charles L Seits
current supply only: see IEEE Transactions on Computers vol C-36 no 5, May 1987

.5230:TR:86 $24.00 Monte Carlo Methods for £-D Compaction, PhD Thesis
Mosteller, R.C.

-5229:TR:86 $4.00 anaLOG - A Functional Simulator for VLSI Neural Systems, MS Thesis
Lazzaro, John

-5228:TR:86 $3.00 On Performance of k-ary n-cube Interconection Networks,
Dally, Win. J

5227:TR:86 $i8.00 Parallel Execution Model for Logic Programming, PhD Thesis
T, Pey-yun Peggy

5223:TR:86 $15.00 Integrated Optical Motion Detection, PhD Thesis
Tanner, John E.

.5221:TR:86 $3.00 Sync Model: A Parallel Execution Method for Logic Programming
Li, Pey-yun Peggy and Alain J. Martin
current supply only: see Proc SLP'86 3rd IEEE Symp on Logic Programming Sept '86

5220:TR:86 $4.00 Submicron Systems Architecture
ARPA Semiannual Technical Report

-5215:TR:86 $2.00 How to Get a Large Natural Language System into a Personal Computer,
Thompson, Bozena H. and Frederick B. Thompson

5214:TR:86 $2.00 ASK is Transportable in Half a Dozen Ways,
Thompson, Bozena H. and Frederick B. Thompson

-5212:TR:86 $2.00 On Seitz' Arbiter,
Martin, Alain J

.5210:TR:86 $2.00 Compiling Communicating Processes into Delay-Insensitive VLSI Circuits,
Martin, Alain
current supply only: see Distributed Computing v 1 no 4 (1986)

-5209:TR:86 $11.00 VLSI Architecture for Concurrent Data Structures, PhD Thesis,
Dally, William J.
current supply only: see book published by Kluwer, 1987

5208:TR:86 $2.00 The Torus Routing Chip,
Dally, William and Charles L Seitz
current supply only: see Distr. Computing vol 1 no 4 1986

5207:TR:86 $2.00 Complete and Infinite Traces: A Descriptive Model of Computing Agents,
van Horn, Kevin

5205:TR:85 $2.00 Two Theorems on Time Bounded Kolmogrov-Chaitin Complexity,
Schweizer, David and Yaser Abu-Mostafa

5204:TR:85 $3.00 An Inverse Limit Construction of a Domain of Infinite Lists,
Choo, Young-il

-5202:TR:85 $15.00 Submicron Systems Architecture,
ARPA Semiannual Technical Report

5200:TR:85 $18.00 ANIMAC: A Multiprocessor Architecture for Real-Time Computer Animation, PhD thesis
Whelan, Dan

5198:TR:85 $8.00 Neural Networks, Pattern Recognition and Fingerprint Hallucination, PhD thesis
Mjolsness, Eric

5197:TR:85 $7.00 Sequential Threshold Circuits, MS thesis
Platt, John

5195:TR:85 $3.00 New Generalization of Dekker's Algorithm for Mutual Exclusion,
Martin, Alain J
current supply only: see Information Processing Letters, 23, 295-297 (1986)

-5194:TR:85 $5.00 Sneptree - A Versatile Interconnection Network,
Li, Pey-yun Peggy and Alain J Martin

2

I
Caltech Computer Science Technical Reports

_5193:TR:85 $2.00 Delay-insensitive Fair Arbiter I
Martin, Alain J
current supply only: see Distr Computing 1:226-234 (1986)

__5190:TR:85 $3.00 Concurrency Algebra and Petri Nets, I
Choo, Young-il

.. 5189:TR:85 $10.00 Hierarchical Composition of VLSI Circuits, PhD Thesis
Whitney, Telle

__5185:TR:85 $11.00 Combining Computation with Geometry, PhD Thesis
Lien, Sheue-Ling

_5184:TR:85 $7.00 Placement of Communicating Processes on Multiprocessor Networks, MS Thesis
Steele, P'aig

__5179:TR:85 $3.00 Sampling Deformed, Intersecting Surfaces with Quadtrees, MS Thesis,
Von Herzen, Brian P.

__5178:TR:85 $9.00 Submicron Systems Architecture,
ARPA Semiannual Technical Report

_5177:TR:85 $4.00 Hot-Clock nMOS,
Seitz, Charles, A H Frey, S Mattisson, S D Rabin, D A Speck, and J L A van de Snepscheut
current supply only: see Proc 1985 Chapel Hill Conference on VLSI, p 1-17

__5174:TR:85 $7.00 Balanced Cube: A Concurrent Data Structure,
Dally, William J and Charles L Seitz

. 5172:TR:85 $6.00 Combined Logical and Functional Programming Language, I
Newton, Michael

.. 5168:TR:84 $3.00 Object Oriented Architecture,
Dally, Bill and Jim Kajiya

_5165:TR:84 $4.00 Customizing One's Own Interface Using English as Primary Language,
Thompson, B H and Frederick B Thompson

_ 5164:TR:84 $13.00 ASK French - A French Natural Language Syntax, MS Thesis
Sanouillet, Remy

___5160:TR:84 $7.00 Submicron Systems Architecture,
ARPA Semiannual Technical Report

__5158:TR:84 $6.00 VLSI Architecture for Sound Synthesis, I
Wawrzynek, John and Carver Mead

__5157:TR:84 $15.00 Bit-Serial Reed-Solomon Decoders in VLSI, PhD Thesis
Whiting, Douglas

__5148:TR:84 $4.00 Fair Mutual Exclusion with Unfair P and V Operations,
Martin, Alain and Jerry Burch
current supply only: see Information Processing Letters, 21, 97-100, (1985)

_5147:TR:84 $4.00 Networks of Machines for Distributed Recursive Computations, I
Martin, Alain and Jan van de Snepscheut

.. 5143:TR:84 $5.00 General Interconnect Problem, MS Thesis
Ngai, John

.. 5140:TR:84 $5.00 Hierarchy of Graph Isomorphism Testing, MS Thesis
Chen, Wen-Chi

__5139:TR:84 $4.00 HEX: A Hierarchical Circuit Extractor, MS Thesis
Oyang, Yen-Jen

_._5137:TR:84 $7.00 Dialogue Designing Dialogue System, PhD Thesis
Ho, Tai-Ping

__5136:TR:84 $5.00 Heterogeneous Data Base Access, PhD Thesis
Papachristidis, Alex

.. 5135:TR:84 $7.00 Toward Concurrent Arithmetic, MS Thesis
Chiang, Chao-Lin

.. 5134:TR:84 $2.00 Using Logic Programming for Compiling APL, MS Thesis
Derby, Howard

I

Caltech Computer Science Technical Reports

5133:TR:84 $13.00 Hierarchical Timing Simulation Model for Digital Integrated Circuits and Systems, PhD Thesis
Lin, Tzu-mu

5132:TR:84 $10.00 Switch Level Fault Simulation of MOS Digital Circuits, MS Thesis
Schuster, Mike

5129:TR:84 $5.00 Design of the MOSAIC Processor, MS Thesis
Lutz, Chris

5128:TM:84 $3.00 Linguistic Analysis of Natural Language Communication with Computers,
Thompson, Bozena H

5125:TR:84 $6.00 Supermesh, MS Thesis
Su, Wen-king

5124:TR:84 $4.00 Probe: An Addition to Communication Primitives,
Martin, Alain
current supply only: see Information Processing Letters, 20, no 3, (1985)

.5123:TR:84 $14.00 Mossim Simulation Engine Architecture and Design,
Dally, Bill

5122:TR:84 $8.00 Submicron Systems Architecture,
ARPA Semiannual Technical Report

.5114:TM:84 $3.00 ASK As Window to the World,
Thompson, Bozena, and Fred Thompson

.5112:TR:83 $22.00 Parallel Machines for Computer Graphics, PhD Thesis
Ulner, Michael

.5106:TM:83 $1.00 Ray Tracing Parametric Patches,
Kajiya, James T

.5104:TR:83 $9.00 Graph Model and the Embedding of MOS Circuits, MS Thesis
Ng, Tak-Kwong

.5097:TR:83 $4.00 Design of a Self-timed Circuit for Distributed Mutual Ezclusion,
Martin, Alain J
current supply only: see Proc. Chapel Hill Conf. on VLSI, 245-259, May 1985

.5094:TR:83 $2.00 Stochastic Estimation of Channel Routing Track Demand,
Ngai, John

.5092:TM:83 $2.00 Residue Arithmetic and VLSI,
Chiang, Chao-Lin and Lennart Johnsson

.5091:TR:83 $2.00 Race Detection in MOS Circuits by Ternary Simulation,
Bryant, Randal E

_5090:TR:83 $9.00 Space- Time Algorithms: Semantics and Methodology, PhD Thesis
Chen, Marina Chien-mei

_5089:TR:83 $10.00 Signal Delay in General RC Networks with Application to Timing Simulation of Digital
Integrated Circuits,
Lin, Tzu-Mu and Carver A Mead

_5086:TR:83 $4.00 VLSI Combinator Reduction Engine, MS Thesis
Athas, William C Jr

_5082:TR:83 $10.00 Hardware Support for Advanced Data Management Systems, PhD Thesis
Neches, Philip

.5081:TR:83 $4.00 RTsim - A Register Transfer Simulator, MS Thesis
Lam, Jimmy

_5080:TR:83 $4.00 Distributed Mutual Ezclusion on a Ring of Processes,
Martin, Alain
current supply only: see Science of Computer Programming, 5, (1985)

_5079:TR:83 $2.00 Highly Concurrent Algorithms for Solving Linear Systems of Equations,
Johnsson, Lennart
current supply only: see Acta Informatica 20, 301-313, (1983)

_5074:TR:83 $10.00 Robust Sentence Analysis and Habitability,
Trawick, David

4

I
Caltech Computer Science Technical Reports

. 5073:TR:83 $12.00 Automated Performance Optimization of Custom Integrated Circuits, PhD Thesis I
"B-'nmberger, Steve

__5065:TR:82 $3.00 Switch Level Model and Simulator for MOS Digital Systems,
Bryant, Randal E I

__5054:TM:82 $3.00 Introducing ASK, A Simple Knowledgeable System, Conf on App'l Natural Language
Processing
Thompson, Bozena H and Frederick B Thompson

_5051:TM:82 $2.00 Knowledgeable Contexts for User Interaction, Proc Nat'l Computer Conference
Thompson, Bozena, Frederick B Thompson, and Tai-Ping Ho

__5035:TR:82 $9.00 Type Inference in a Declarationless, Object. Oriented Language, MS Thesis
Holstege, Eric I

__5034:TR:82 $12.00 Hybrid Processing, PhD Thesis

Carroll, Chris
__5033:TR:82 $4.00 MOSSIM II: A Switch-Level Simulator for MOS LSI User's Manual,

Schuster, Mike, Randal Bryant and Doug Whiting
__5029:TM:82 $4.00 POOH User's Manual,

Whitney, Telle
_5018:TM:82 $2.00 Filtering High Quality Text for Display on Raster Scan Devices,

Kajiya, Jim and Mike Ullner
_5017:TM:82 $2.00 Ray Tracing Parametric Patches,

Kajiya, JimI

__5015:TR:82 $15.00 VLSI Computational Structures Applied to Fingerprint Image Analysis,

Megdal, Barry
__5014:TR:82 $15.00 Extension of Object-Oriented Languages to a Homogeneous, Concurrent Architecture, PhD Thesis

Lang, Charles R Jr
_5012:TM:82 $2.00 Switch-Level Modeling of MOS Digital Circuits,

Bryant, Randal
__5000:TR:82 $6.00 Self- Timed Chip Set for Multiprocessor Communication, MS Thesis

Whiting, Douglas
-4684:TR:82 $3.00 Characterization of Deadlock Free Resource Contentions,

Chen, Marina, Martin Rem, and Ronald Graham
__4655:TR:81 $20.00 Proc Second Caltech Conf on VLSI,

Seitz, Charles, ed.
__3760:TR:80 $10.00 Tree Machine: A Highly Concurrent Computing Environment, PhD Thesis

Browning, Sally I
_3759:TR:80 $10.00 Homogeneous Machine, PhD Thesis

Locanthi, Bart
__3710:TR:80 $10.00 Understanding Hierarchical Design, PhD Thesis

Rowson, James
__3340:TR:79 $26.00 Proc. Caltech Conference on VLSI (1979),

Seitz, Charles, ed
___2276:TM:78 $12.00 Language Processor and a Sample Language,

Ayres, Ron I

I
I

I

I
Caltech Computer Science Technical Reports

Ilease fill in your name, address and amount enclosed below:

I ddress-

Iity State Zip Country

Amount enclosed $

E _ Please check here if you wish to be included on our mailing list

Please check here for any change of address

I- Please check here if you would prefer to have future publications lists sent to your e-mail address.

imail
address

Return this form to: Computer Science Library, 256-80, Caltech, Pasadena CA 91125I
I
I
I
I
I
I
I
I
I
I[
I

